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Abstract. A scalable hardware platform made of custom reconfigurable
devices endowed with bio-inspired ontogenetic and epigenetic features
is configured to run an artificial neural network with developmental
and evolvable capabilities. The hardware architecture allows internet-
work communication and this study analyzes the simulated activity of
two hierarchically organized spiking neural networks. The main features
were an initial developmental phase characterized by cell death (apop-
tosis driven by excessive firing rate), followed by spike timing depen-
dent synaptic plasticity in presence of background noise. The emergence
of precise firing sequences formed by recurrent patterns of spike inter-
vals above chance levels suggested the build-up of a connectivity, out
of initially randomly connected networks, able to sustain temporal in-
formation processing. The relative frequency of precise firing sequences
was higher in the downstream network and their dynamics suggested the
emergence of an unsupervised hierarchical activity-driven connectivity.

1 Introduction

The simulation of a human artifact of ontogentic and epigenetic processes that
occur in the embryonic nervous system is a long-standing objective of the bio-
inspired and evolvable hardware community. The simulation of large-scale com-
plex systems is a core task in the framework of Perplexus, an international project
aimed to develop a scalable hardware platform made of custom reconfigurable
devices endowed with bio-inspired features (Sanchez et al., 2007). However, the
Perplexus project is not aimed at implementing a whole model of the brain,
neither of the cerebral cortex in its entirety, rather a bio-inspired neural network
with developmental and evolvable capabilities.

The embryonic nervous system is initially driven by genetic programs that con-
trol neural stem cell proliferation, differentiation and migration through the
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actions of a limited set of trophic factors and guidance cues (Oppenheim, 1981; In-
nocenti, 1995). The outcome of this phase is a pattern of neuronal connectivity
characterized by a large amount of diffusely distributed branches and synapses.
After a relatively short period of stable synaptic density, a pruning process begins:
synapses are constantly removed, yielding a marked decrease in synaptic density
(Innocenti and Price, 2005). The refinement of the nervous system in the cere-
bral cortex is likely to be associated with a gradient-like organization of patterns
of gene expressions driving apoptosis–genetically programmed cell death–and se-
lective axon pruning driven by synaptic plasticity (Elston, 2002; Innocenti and
Price, 2005; Low and Cheng, 2006; Yamamori and Rockland, 2006). Eventually,
in the adult brain the cerebral cortex is formed by a vast amount of hierarchically
organized areas that can be very schematically considered as “primary” or “input”
areas (if receiving a direct input from the ascending sensory pathway) “secondary”
or “associative” areas (if receiving inputs from the primary areas), and “motor”
or “output” areas (if projecting to the efferent system).

Synapses can change their strength in response to the activity of both pre-,
and post-synaptic cells (Roberts and Bell, 2002) following spike timing depen-
dent plasticity rules that were already successfully implemented in bio-inspired
evolvable hardware (Moreno et al., 2005; Moreno et al., 2006). Certain path-
ways through the network may be favored by preferred synaptic interactions
between the neural elements as a consequence of developmental and learning
processes (Braitenberg and Schuez, 1998). In cell assemblies interconnected in
this way some ordered and precise–in the order of few ms–interspike interval
relationships, referred to as “spatio-temporal firing patterns” or “precise firing
sequences”, may recur within spike trains of individual neurons and across spike
trains recorded from different neurons (Abeles, 1991). It is expected that the
same temporal pattern of firing would be observed whenever the same informa-
tion is presented in a particular cell assembly (Villa et al., 1999; Villa, 2000).
Then, firing patterns are determined by both developmental events (ontogenetic)
and synaptic plasticity (epigenetic). The dynamics of firing patterns in the vari-
ous cortical areas are likely to vary with the functional roles played by the areas
themselves in a way to let emerge higher cognitive activities that require feature
binding and compositionality (Singer, 1999; Abeles et al., 2004).

A novel and flexible hardware architecture called ubidule has been developed
in the framework of the Perplexus project to simulate neural networks with on-
togenetic and epigenetic features (Upegui et al., 2007). The present study is
aimed to investigate how the dynamics of firing patterns varies in evolvable hi-
erarchically organized neural networks. A better knowledge of these dynamics is
essential for understanding how to implement the emerging cognitive properties
of these networks in a multiple ubidules autonomous robot. The networks are
organized such that selected units of the first network–assumed to correspond to
its output layer–drive the input activity of the second network. The upstream
network is the only one receiving an external input, thus corresponding to a “pri-
mary area”, and the downstream network corresponds to a “secondary area”.
The output spike trains of both networks were scanned to detect precise firing
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sequences. The structure and dynamics of the detected precise firing sequences
were analyzed and compared with the results obtained for the single simulated
networks in presence and in absence of stimuli (Iglesias et al., 2007).

2 Neural Network Simulations

Each network is a 2D lattice of 100 x 100 units–80% of excitatory units (exc)
and 20% of inhibitory (inh) units–uniformly distributed over the network ac-
cording to a space-filling quasi-random Sobol distribution (Press et al., 1992).
The probability that, within each network, a unit be connected to another one
followed a Gaussian density function with different parameters for excitatory
and inhibitory units (Iglesias et al., 2005). All units were simulated by leaky
integrate-and-fire neuromimes (Iglesias and Villa, 2007).

Background activity was used to simulate the effect of afferences that were
not explicitly simulated within a network. To this end we assumed that all units
received the same number of external inputs and that all of these were excitatory.
Both apoptosis and synaptic pruning were taken into account in presence of a
background noise (Iglesias and Villa, 2007). Apoptosis was active only at the
begin of each simulation run; in this study apoptosis was active during the initial
700 ms. Synaptic plasticity was active from the end of apoptosis until the end
of simulation.

It is assumed a priori that modifiable synapses were characterized by acti-
vation levels with 4 attractor states (Iglesias et al., 2005). The activation levels
could be interpreted as a combination of two factors: the number of synaptic
boutons between the pre- and post-synaptic units and the changes in synaptic
conductance. In the current study we attributed a fixed activation level (mean-
ing no synaptic modification) Aji(t) = 1, to (inh, exc) and (inh, inh) synapses
while activation levels were allowed to take one of Aji(t) = {0, 1, 2, 4} for (exc,
exc) and (exc, inh), Aji(t) = 0 meaning that the projection was permanently
pruned out. For Aji(t) = 1, the post-synaptic potentials were set to 0.84 mV
and −0.8 mV for excitatory and inhibitory units, respectively. The projections
from and to “dead” units undergo a decay of their synapses leading eventually to
their pruning when Aji(t) = 0. Other projections may be pruned due to synaptic
depression driven by STDP and also leading to Aji(t) = 0. Thus, some units that
survived the early phase can also remain without any excitatory input. Besides
cell death and axonal pruning of dead cells provoked by apoptosis, the loss of all
excitatory inputs due to synaptic plasticity provoked also the cell death (even
in presence of background activity) immediately after the pruning of the last
excitatory afference from within the network.

In each network two sets of 400 exc units (i.e., 800 units overall) were ran-
domly selected among the 8,000 exc units. These units corresponded to the
“input layer” of the network, meaning that in addition to sending and receiving
connections from within the network units of both types (exc and inh) they
received an external input (Fig.1a).
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Fig. 1. Neural network diagram. (a): Single network diagram. The network input
layer selected randomly is receiving an external input. The output layer is defined as
all units having at least 5 active connections by the end of simulation. The spike trains
of the output units is the network output. The spike trains are scanned for precise firing
sequences (PFS). (b): Coupled networks. The upstream network (on the left) receives
an external input and its output layer projects to the input layer of the downstream
network (on the right).

An external input–the “stimulus”–was periodically fed to the input layer at
the rate of 0.5 Hz. The duration of each input was 100ms. At t = 1 ms of the
input 40 units out of the 400 exc units of the first set were randomly selected
to receive a strong depolarization. At t = 2 ms a depolarization was sent to
another subset of 40 randomly selected units among the remaining 360 of the first
set, and so on until all 400 units received a depolarization. This depolarization
sequence was repeated 5 times during the first 50 ms of the input. During the
following 50 ms the same procedure was applied to the second set of 400 units.
Two networks were studied here. The network receiving an external input akin
of sensory afferent activity was called the “upstream network”. The network
receiving only an input from the upstream network was called the “downstream
network” (Fig.1b). In the upstream network a subset of excitatory units not
belonging to the input layer was selected as “output layer”. The output layer was
formed by all units maintaining at least five active excitatory input connections
from within the network after a simulation run lasting 100.000 ms with time
resolution of 1 ms. The amount of units belonging to the output layer was in
the range 100-150, depending on the random number generator initialization.
Notice that the connections between the output layer of the upstream network
and the input layer of the downstream network are synaptic connections with the
activation level invariant throughout the simulation and with synaptic strengths
identical to the afferent sensory projections.
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Fig. 2. Outline of the general procedure followed by pattern detection algorithms.
(a): Analysis of a set of simultaneously recorded spike trains. Three cells, labeled A,
B, and C, participate to a patterned activity. Three occurrences of a precise pattern
are detected. Each occurrence of the pattern has been labeled by a specific marker in
order to help the reader to identify the corresponding spikes. (b): Estimation of the
statistical significance of the detected pattern. (c): Display of pattern occurrences as
a raster plot aligned on the pattern start.

The spike trains of neuromimes of the output layer of the downstream net-
work were recorded and searched for precise firing sequences (PFS) by means
of the “pattern grouping algorithm” (PGA) (Tetko and Villa, 2001). PFS were
defined as sequences of intervals with high temporal precision between at least 3
spikes (triplets) of the same or different units that recurred at levels above those
expected by chance (Fig.2). PFS can be formed by spikes generated by one unit
only. In this case PFS are referred to as ’single-unit patterns’. PFS that include
spikes generated by different units are referred to as ’multi-unit patterns’. For
the present study PGA was set to find patterns formed by three (triplets) or
four spikes (quadruplets), with a significance level p = 0.10, provided the entire
pattern did not last more than 800 ms and was repeated with a jitter accuracy
of ±5 ms. The current implementation of PGA allows the simultaneous analysis
of only 20 spike trains. Then, the output layer was randomly subdivided into
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groups of 20 units. This procedure underestimates the real number of ’multi-unit
patterns’ but the bias is the same and does not affect the comparison of coupled
vs. non coupled networks.

3 Recording Conditions

For each network we recorded separately the spike trains due to the effects of
background noise only. These recordings corresponded to a “control condition”
necessary to evaluate the “effective spike trains” that represent the genuine ac-
tivity due to network dynamics (Hill and Villa, 1997). All PFS were searched in
the effective spike trains. We distinguish four recording conditions labeled ’stim
OFF’, ’stim ON’, ’coupled 1’ and ’coupled 2’.

‘stim OFF’: The activity of a single network was recorded in the absence of
any external input and in presence of the background noise only. The effective
spike trains represented the net effect of internal network dynamics shaped by
spontaneous synaptic pruning.

‘stim ON’: The activity of the upstream network was recorded in presence of
an external input corresponding to a spatiotemporal pattern of activity (Iglesias
and Villa, 2007).

‘coupled 1’: The activity of the downstream network was recorded in presence
of an external input fed to the upstream network. The pattern of connectivity
between the two networks was such that each unit of the upstream output layer
was connected to only one unit of the downstream input layer, randomly selected
among the predefined 800 input units.

‘coupled 2’: The activity of the downstream network was recorded in presence
of an external input fed to the upstream network. The pattern of connectivity
between the two networks was such that the upstream output layer was charac-
terized by divergent projections onto the downstream input layer. Each of the
800 units of the downstream input layer were receiving a projection from one
unit of the upstream output layer.

4 Results

Precise firing sequences are simply referred below as “patterns”. Because of a
high sensitivity to the initial conditions we repeated all simulation runs with 30
different random generator seeds. Table 1 shows cumulated statistics over all 30
simulation runs. This Table shows that in absence of an external input (’stim
OFF’) more units survive at the end of the simulation run. In case of coupled
networks more patterns were found in proportion to the number of active cells.
Moreover, in coupled networks each pattern tended to appear more often.

It is important to notice that both ’stim ON’ and ’coupled 2’ networks were
characterized by 800 external afferent inputs. Despite this similarity there is a
decrease in about 10% of the amount of surviving cells in the ’coupled 2’ network
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Table 1. Patterns statistics summarized for 30 simulation of each series: numbers
of active cells by the end of simulations; number of Detected Patterns with ’Active
Cells- Detected Patterns’ ratio in parentheses, number of occurrences of detected pre-
cise firing sequences with average number of occurrences per pattern in parentheses;
’Triplet/Quadruplet’ ratio; number of detected multi-unit patterns

stim OFF stim ON coupled 1 coupled 2

Active Cells
total 5352 4240 4860 3763
per simulation 178 ± 35 141 ± 33 192 ± 41 125 ± 44

Detected Patterns
total 97 (3.7%) 147 (3.5%) 241 (5%) 168 (5%)
per simulation 3.2 ± 3.3 4.9 ± 3.0 8.0 ± 3.6 5.6 ± 4.1

Pattern Occurences
total 7359 (38.5) 5672 (37.4) 9373 (39.9) 7853 (46.8)
per simulation 245 ± 128 189 ± 152 312 ± 166 292 ± 171

Triplets/Quadruplets 59/138=0.4 54/93=0.6 107/134=0.8 89/99=0.9

Multi-unit Patterns 6 5 8 12

by the end of simulation. The ratio of detected patterns vs. active cells was close
to 5% in the downstream network and < 4% in the upstream network (Table 1,
second line). This difference seems small overall but it was significant by χ2-test
(p < 0.05). The PGA algorithm detected all repetitions of the same precise firing
sequence in the spike trains. Notice that the average number of repetitions per
pattern increased in the downstream network (up to 46.8 in ’coupled 2’).

In all recording conditions we observed more patterns formed by four spikes
(quadruplets) vs. patterns formed by three spikes (triplets). However, the ratio
of triplets over quadruplets tended to become closer to 1 in coupled networks
(Table 1, third line). In principle one could expect that most triplets correspond-
ing to subpatterns of a significant quadruplet would also be counted among the
significant triplets. This is generally not the case because of the very stringent
tests of significance carried on triplets that bias the pattern detection in the
sense of underestimating the number of triplets (Tetko and Villa, 2001). Most
patterns were single-unit patterns but generally the units that were involved
were different from pattern to pattern. Depending on the recording condition
we observed only 1–3 units that produced more than one single-unit pattern.
Multi-unit patterns were observed in all networks and they were more frequent
in the ’coupled 2’ downstream network. The probability of multi-unit pattern
detection is very small due to the PGA sampling procedure for selection of the
spike trains to be analyzed simultaneously. Then, the increase in frequency of
multi-unit patterns could not be assessed with reliable confidence.

The internal temporal structure of precise firing sequences was further in-
vestigated. The analysis of the distribution of the intervals between the events
forming the patterns was performed with the triplets by separating the inter-
vals between the first and second events of the pattern (Fig. 3a,c,e,g) and the
intervals between the second and third events of the pattern (Fig. 3b,d,f,h). In
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Fig. 3. Distribution (relative frequency) of the intrapattern intervals for triplets. Bin
size: 50 ms. (a,c,e,g): first interval (between the first and second spike of the pattern).
(b,d,f,h): second interval (between the second and third spike of the pattern).

case of quadruplets, for this analysis we considered the triplets corresponding
to the subpatterns. The temporal structure of patterns tended to be different
in the downstream network as indicated by the decrease of short first intervals
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Fig. 4. Histogram of the onset time of all patterns. Bin size: 2000 ms. Notice the shift
of the distribution towards later times for ’coupled 1’ and ’coupled 2’ networks, but in
all cases the patterns appeared before time t = 50.000 ms.
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Fig. 5. Distribution of the epochs of all events belonging to all patterns. Bin size:
2000 ms. Notice the less steep slope for the ’coupled 2’ downstream network.

(Fig. 3e,g) compared to the first intervals of the upstream network in presence
(Fig. 3a) and in absence of stimulation (Fig. 3c) as well.

Figure 4 shows the distribution of the onset time of the first occurrence of each
pattern. In all recording conditions most patterns appeared before t = 30.000 ms
and not later than t = 50.000 ms. In the downstream network (in particular ’cou-
pled 2’) the patterns tended to appear later during the simulation. Figure 5 shows
the distribution of the epochs of all spikes belonging to all repeated patterns. It
is interesting to notice that after a certain delay the probability to find a spike
belonging to a pattern tended to be almost constant for all recording conditions.
However, such plateau was reached much later for the most interconnected down-
stream network (Fig. 5 ’coupled 2’), at a time near t = 35.000 ms.

5 Discussion

The present study analyzes the activity dynamics of two interconnected neural
networks that are hierarchically connected with respect to an external stimulus.
The hardware compatible simulation was designed in order to be implemented
on a scalable hardware platform (Sanchez et al., 2007) retaining much of the bi-
ological neural development features (i.e., spiking neural networks characterized
by a brief initial phase of cell death followed by STDP and synaptic pruning)
(Innocenti and Price, 2005). The custom designed ubidule hardware is currently
tested and a hardware implementation of the experiment presented here is sched-
uled in the year 2009.
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It is foreseen that the hardware implementation of a spiking neural network
on an ubidule will allow simulation and study of more complex hierarchical orga-
nizations including a larger number of neural networks exchanging their neural
activity. This exchange will be based on the sensory (“input layer”) and actuator
(“input layer”) units provided that each ubidule is equiped with an encoder and
a decoder able to transmit the activity of the neural network over the wireless
network that id used for inter-ubidules communication. The input layer of a
network can be wired to receive inputs from either a hardware sensor (photodi-
ode, camera, microphone, mechano-sensor, . . . ), thus representing the upstream
network of this study, or from other ubidules, thus representing the downstream
network. The actuator units could also be wired to hardware actuators (diode ar-
ray, loudspeaker, electrical motor, . . . ) and/or to an encoder broadcasting their
activity over the wireless network.

The present results show that the downstream network activity was character-
ized by fewer surviving units at the end of the simulation run. This difference was
only due to synaptic pruning driven by spike timing dependent plasticity because
cell death provoked by apoptosis was similar for both upstream and downstream
networks. In presence of the external stimulus PFS observed in the upstream
network were relatively more frequent than in the absence of stimulation, in
accordance with results presented elsewhere (Iglesias and Villa, 2007). The anal-
ysis of the onset time of the patterns and their internal dynamics suggests that
downstream networks took more time to build-up the connectivity underlying
the emergence of the patterns. The finding of what could be viewed as an in-
crease in “complexity” of the temporally organized activity in the downstream
network was achieved with less active units and in a totally unsupervised way.
These results suggest that precise firing sequences might be the most relevant
information to be transmitted by ubidules in an open-field arena. Information
processing carried by such patterned activity (Abeles et al., 2004) was suggested
to play a key-role in achieving compositionality of mental representations (Fodor
and Pylyshyn, 1988).
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