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Neural development and differentiation are characterized by an overproduction of cells and a transient
exuberant number of connections followed by cell death and selective synaptic pruning. We simulated
large spiking neural networks (10,000 units at its maximum size) with and without an ontogenetic pro-
cess corresponding to a brief initial phase of apoptosis driven by an excessive firing rate mimicking cell
death due to glutamatergic neurotoxicity and glutamate-triggered apoptosis. This phase was followed by
the onset of spike timing dependent synaptic plasticity (STDP), driven by spatiotemporal patterns of
stimulation. Despite the reduction in cell counts the apoptosis tended to increase the excitatory/inhibi-
tory ratio because the inhibitory cells were affected at first. Recurrent spatiotemporal firing patterns
emerged in both developmental condition but they differed in dynamics. They were less numerous but
repeated more often after apoptosis. The results suggest that initial cell death may be necessary for
the emergence of stable cell assemblies, able to sustain and process temporal information, from the ini-
tially randomly connected networks.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The pattern of neuronal connectivity in an adult brain is deter-
mined by the complex interplay of genetic expression, develop-
mental maturation and by epigenetic processes associated to
plasticity and learning. The overproduction of synaptic contacts
during the early stages of neural development followed by massive
synaptic pruning, persistence of high density of synapses until sex-
ual maturation and decrease at the adult age appear to be a com-
mon pattern of Mammals (Huttenlocher, 1979; Oppenheim,
1981; Huttenlocher et al., 1982; Rakic et al., 1986; Rakic et al.,
1994; Innocenti, 1995). In the cerebral cortex there are known re-
gional differences in the timing of developmental brain plasticity
that occurs earliest in the primary motor and sensory areas and
latest in prefrontal cortex (Conel, 1939–1963; Huttenlocher and
Dabholkar, 1997) thus suggesting a gradient-like organization dur-
ing early corticogenesis (Elston, 2002; Fujita, 2002) that is likely to
be related to cortical patterns of gene expressions (Yamamori and
Rockland, 2006). The exuberant development of neural circuits
ll rights reserved.
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involves the formation of long transient axonal projections, the
overproduction of axonal branches and synapses and the overpro-
duction of dendritic branches and/or spines. These features are
strongly associated to the amount of living neurons because it is
known that about less than half of the neurons survive during
development till adulthood (Yuan et al., 2003; Innocenti and Price,
2005).

Apoptosis is the programmed cell death that has been observed
ubiquitously in the nervous system which results in the massive
loss of the cells and of all their appendices and synapses. It declines
significantly during the postnatal period (Rice and Barone, 2000;
Levitt, 2003). Developmental apoptosis is likely to be regulated
by a combination of genetic, molecular (guidance and growth fac-
tors) and cellular mechanisms (Oppenheim, 1991; Luo and O’Leary,
2005; Low and Cheng, 2006). In particular, apoptosis has been
associated with neurotoxicity mediated by excessive levels of
glutamate (Kure et al., 1991; Bonfoco et al., 1995; Figiel and
Kaczmarek, 1997). Glutamate is an amino acid that plays an essen-
tial role in neurotransmission in the CNS (Cotman and Monaghan,
1988). The activation of N-methyl-D-aspartate (NMDA) subclass of
ionotropic glutamate receptor (NMDAR) is involved in synaptic
plasticity (Roberts and Bell, 2002; Gerkin et al., 2007; Urakubo
et al., 2008) as well as in neurotoxicity (Choi et al., 1988; Johnston
et al., 2001). NMDA-mediated apoptosis is well recognized
(Kure et al., 1991; Jiang et al., 2000; Zieminska et al., 2003). There

http://dx.doi.org/10.1016/j.jphysparis.2009.11.016
mailto:javier.iglesias@upc.edu
mailto:alessandro.villa@          neuroheuristic.org
mailto:alessandro.villa@          neuroheuristic.org
http://www.sciencedirect.com/science/journal/09284257
http://www.elsevier.com/locate/jphysparis


ba

dc

Fig. 1. Early embryonic phases of simulated ontogenesis of a pseudo-cortical area.
(a) At time T0 a neural stem cell begins to proliferate until. (b) Time Tp when a N � N
lattice is filled. (c) By time Td1 the stem cells differentiated in two groups,
glutamatergic (white circles) and GABAergic (black circles). (d) By time Td2 a certain
number of glutamatergic cells (solid white circles) differentiated further to receive
inputs from the ascending sensory pathway (dotted arrow).
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is evidence that expression of apoptotic and antiapoptotic
proteins (Schelman et al., 2004) and the effect of growth factors
(Egawa-Tsuzuki et al., 2004) could be both regulated by glutamate
but the exact mechanism underlying NMDA-mediated apoptosis is
not yet fully understood.

The projections that are maintained after the initial massive cell
death may proliferate and form transient collaterals that further
extend in the target areas but that eventually tend be removed
following a mechanism that is likely to be activity-dependent
(Innocenti, 1995; Lopez-Bendito and Molnar, 2003). There are con-
troversial results about the respective roles of pre- and post-synap-
tic activities in determining the establishment of connections
rather than their selection but there is little doubt that selective
patterns of activity, in addition to background activity, are neces-
sary to achieve correctly this developmental phase (Shatz, 1990;
Catalano and Shatz, 1998; Hanson and Landmesser, 2004; Mizuno
et al., 2007).

Synaptic pruning – the elimination of synapses – is likely to
deeply affect the information processing by differentiating the
strength of the connections between neuronal populations. Spike
timing dependent synaptic plasticity (STDP) is a change in the
synaptic strength based on the ordering of pre- and post-synap-
tic spikes (Bell et al., 1997; Roberts and Bell, 2002; Karmarkar
and Buonomano, 2002). It has been proposed as a mechanism
to explain the strengthening of synapses repeatedly activated
shortly before occurrences of spikes in the post-synaptic cells.
STDP may also explain the weakening of synaptic strength
whenever the pre-synaptic cell is repeatedly activated shortly
after the occurrence of a post-synaptic spike. The study of the
relation between synaptic efficacy and synaptic pruning
suggests that the weak synapses may be modified and removed
through competitive ‘‘learning” rules (Chechik et al., 1999).
Then, such remodeling of neural wiring appears to be selective
in the sense that converging synapses are competing for control
of the timing of post-synaptic action potentials (Guyonneau
et al., 2005).

The function achieved by the elimination of the exuberant syn-
apses might relate to the emergence of selective properties of the
surviving neural circuits (Chen et al., 2005; Iglesias et al., 2005).
One such property could be the ability to preserve accurate tempo-
ral information distributed across a circuit of functionally intercon-
nected neurons, referred to as ‘‘cell assembly”. Cell assemblies
interconnected in this way would be characterized by recurrent,
above chance levels, ordered sequences of precise (in the order of
few ms) interspike intervals referred to as spatiotemporal patterns
of discharges or preferred firing sequences (Abeles, 1991). Such
precise firing patterns have been associated with specific behav-
ioral processes in rats (Villa et al., 1999) and primates (Shmiel
et al., 2006).

We have extended our previous model (Iglesias and Villa,
2006; Iglesias and Villa, 2007) by the sequential implementation
of several developmental processes that are directly inspired by
the observation of neural development. In particular we intro-
duced an ‘‘early developmental phase” characterized by cell death
followed by the enabling of the synaptic modification rules ap-
plied to excitatory–excitatory (exc, exc) and excitatory–inhibitory
(exc, inh) connections. We have also extended the characteriza-
tion of the spatiotemporal firing patterns timing structure. Sev-
eral aspects of our simulation framework refer to genetic
aspects that are not analyzed here because they are parts of a
long standing research project (Sanchez et al., 2007) compatible
with hardware implementation (Eriksson et al., 2003). The precise
aim of the current study is to investigate whether or not, and un-
der which conditions, there is a dynamics of occurrence of spatio-
temporal patterns of activity in such developing artificial neural
networks.
2. Methods

2.1. Proliferation and differentiation

We assume that the ontogenesis of a pseudo-cortical area is
determined along a sequence of discrete steps occurring during
embryonic development. Time zero T0 of the ontogenesis was
characterized by the appearance of the first neural stem cell. All
other neural stem cells originated from the first one by mitotic
divisions. The proliferation process was ended by time Tp. In the
current simulation we assume that the neural tissue is laid down
on a 100� 100 2D lattice. During the next ontogenetic phase the
neural stem cells differentiated into several types of neurons.

In this study we set only two types of neurons: glutamatergic
and GABAergic. We assume that no developmental ‘‘diseases” oc-
curred during these phases such that out of a total amount of
10,000 neurons the two neuronal populations were divided in
8000 glutamatergic and 2000 GABAergic cells. The spatial distribu-
tion of these two populations followed a space-filling quasi-ran-
dom Sobol distribution (Press et al., 1992). Two sets of 400
glutamatergic cells (i.e., 800 units overall), labeled sets A and B,
were further differentiated. The units belonging to sets A and B cor-
respond to the ‘‘sensory units” of the network – the input layer –
meaning that in addition to sending and receiving connections
from the other units of both types they received inputs from the
ascending sensory pathway. Fig. 1 illustrates these early ontoge-
netic phases.
2.2. Synaptogenesis

For sake of simplicity the input layer of the network is repre-
sented on one side of the lattice in Fig. 2a but this figure panel is
equivalent to Fig. 1d. At time Td2 the main differentiation phase
ended and we assume that morphogenetic processes (e.g., based
on diffusion of growth factors) were responsible to drive the estab-
lishment of connections – synaptogenesis – between the neurons
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Fig. 2. Developmental phases of simulated ontogenesis of a pseudo-cortical area.
(a) At time Td2 the glutamatergic cells (solid white circles) receiving projections
from the ascending sensory pathway (dotted arrow) are represented on one side of
the network but in reality they are scattered throughout the network. (b) Time TS

characteristic of the synaptogenesis. (c) The cellular development of the neurons is
complete; the background activity provokes spiking activity in the network. (d)
Time Tap a massive cell death occurred and the dead cells (grey crossed circles)
disappear; notice that some excitatory cells (solid squares) kept long range
projections outside the local area.
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of both populations. In the current study sparse connections be-
tween the populations of units were randomly generated accord-
ing to a 2D Gaussian density function with dense projections in a
local neighborhood described elsewhere (Iglesias et al., 2005).
Long-range excitatory projections were allowed with a probability
of 2%. Notice that edge effects induced by the borders were limited
by folding the network as a torus. Time TS indicates the end of the
synaptogenesis (Fig. 2b). At this time the network is characterized
by its maximum degree of connectivity due to the large extent of
exuberant connections. Here we assume that no new synapses will
be formed during the simulation.

2.3. Neuromimetic model

At time Tact the neuronal membrane is characterized by all ionic
channels that allow the generation of the action potentials. We as-
sume that at this stage the neurons began to receive unspecific in-
puts that affected the excitability of their membrane (Fig. 2c). The
‘‘spontaneous activity” that is generated within the network is
parameterized by BiðtÞ that is the background activity arriving to
the ith cell. In this study each neuron received an independent
Poissonian distributed train of background pulses with an average
frequency of 5 spikes=s. More details about the effect of back-
ground activity in a similar framework are found in (Iglesias
et al., 2005).

The neurons are considered to behave like leaky integrate-and-
fire units whose neuromimetic model is briefly described as fol-
lows. At each time step, the value of the membrane potential of
the ith unit, ViðtÞ, is calculated such that

Viðt þ 1Þ ¼ V rest½q� þ BiðtÞ þ ð1� SiðtÞÞððViðtÞ � V rest½q�Þkmem½q�Þ þ
X

j

wjiðtÞ
where V rest½q� corresponds to the value of the resting potential for the
units of type ½q�;BiðtÞ the background activity arriving to the ith unit,
SiðtÞ the state of the unit, kmem½q� ¼ expð�1=smem½q�Þ the constant
associated to the current of leakage for the units of type
½q�; and wjiðtÞ are the post-synaptic potentials of the jth units pro-
jecting to the ith unit.

The state of a unit SiðtÞ is a function of the membrane potential
ViðtÞ and of a threshold h½q�i , such that SiðtÞ ¼HðViðtÞ � h½q�i Þ, where
H is the Heaviside function, HðxÞ ¼ 0 : x < 0;HðxÞ ¼ 1 : x P 0. It
is assumed that a unit can generate a spike only for SiðtÞ ¼ 1. In
addition, the state of the unit depends on the refractory period
trefract½q�: after spiking, the membrane potential was reset to its rest-
ing potential, and the unit entered an absolute refractory period
lasting three and two time steps for glutamatergic and GABAergic
units, respectively.

The type of the synapse is a parameter that depends on the
neurotransmitter released by the pre-synaptic cell and by the
receptor of the post-synaptic neuron. In the current study we as-
sume that the activation of all glutamatergic receptors depolarized
the membrane (i.e., they are excitatory). We assume also that all
GABAergic receptors were associated to hyperpolarizing currents
(i.e., they are inhibitory). Then, the glutamatergic cells are referred
to as excitatory cells and the GABAergic cells as inhibitory cells. Fur-
thermore, we assume that the excitatory post-synaptic potential of
glutamatergic synapses on glutamatergic cells P½glu;glu� (exc, exc) and
on GABAergic cells P½glu;GABA� (exc, inh) were similar. The same
assumption is made for inhibitory post-synaptic potentials
P½GABA;glu� (inh, exc) and P½GABA;GABA� (inh, inh). The synaptic weight
wji is expressed by wjiðt þ 1Þ ¼ SjðtÞ � AjiðtÞ � P½qj ;qi �, where Sj is the
state of the pre-synaptic unit, P½qj ;qi � is the synaptic type, and Aji

is the activation level of the synapse discussed below in Section
2.5. In the current study a fixed activation level AjiðtÞ ¼ 1 was
set for (inh, exc) and (inh, inh) synapses, with P½GABA;x� ¼ �0:8 mV.
For all excitatory synapses the parameters were AjiðtÞ ¼ 2 and
P½glu;x� ¼ 0:84 mV.

2.4. Massive cell death

The ‘‘death” of units is introduced in the current model and rep-
resents a major difference with our previous studies (Iglesias et al.,
2005; Iglesias and Villa, 2007). Cell death may be directly provoked
by a mechanism associated with glutamatergic neurotoxicity
which, in our case, corresponds to the possibility to enter an apop-
totic faith after an excessive firing rate. The second cause of cell
death is indirect and it happened when a cell lost all its excitatory
inputs. In all cases a dead unit was characterized by the absence of
any spiking activity and its removal from the neuronal network
computation.

The apoptotic phase started at Tact , when the units began to be
depolarized by the background activity. The spiking activity of the
excitatory neurons builded-up very fast due to the presence of the
large amount of recurrent exuberant connections within the net-
work. This excitatory activity provoked a rapid increase in the
activity of the majority of the cells of the network. We assume that
an extremely high level of activity is associated with high levels of
glutamate. During this phase, at each time step and for each unit i,
an average firing rate FR50ðiÞwas computed over a running window
corresponding to 50 ms. For both excitatory and inhibitory neurons
a maximum firing rate FRM was arbitrarily determined following a
parameter search procedure. In this study we used FRMexc ¼
245 spikes=s and FRMinh ¼ 250 spikes=s, respectively. This maxi-
mum firing rate FRM is assumed to trigger the genetic expression
leading to apoptosis. If FR50 > FRM for the corresponding unit type
the cell had a probability to enter apoptosis according to the
function
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PdeathðtÞ ¼
0:5 � t2 � 4:5 � 10�6 � t3

44 � ð2:5� 106 þ 6� 10�3 � t2Þ
: ð1Þ

The parameters of this function are far from representing any
known cellular behavior. The function of Eq. (1) was selected fol-
lowing a parameter search procedure aimed to maintain a bal-
anced excitatory/inhibitory ratio despite the cell death affecting
all populations of cells. The probability to enter apoptosis in-
creased with time such that Pdeathðt ¼ 100 msÞ ¼ 4:5� 10�5;

Pdeathðt ¼ 700 msÞ ¼ 2:2� 10�3 and Pdeathðt ¼ 800 msÞ ¼ 2:9�
10�3. Notice that at the end of this phase a subpopulation of the
excitatory cells is characterized by their projections outside the
network area (Fig. 2). These long-term projecting cells are assumed
to correspond to the ‘‘output layer” of the network, but they will
not be discussed further in this paper.
2.5. Synaptic plasticity

The synaptic spike timing dependent plasticity (STDP) was en-
abled at the end of the apoptotic phase (Fig. 3b). It is assumed a pri-
ori that modifiable synapses are characterized by discrete
activation levels (Montgomery and Madison, 2004; Genoux and
Montgomery, 2007) that could be interpreted as a combination
of two factors: the number of synaptic boutons between the pre-
and post-synaptic units and the changes in synaptic conductance.
A real-valued variable LjiðtÞ is used to implement the spike timing
dependent plasticity rule for AjiðtÞ, with integration of the timing
of the pre- and post-synaptic activities. The variables LjiðtÞ are
user-defined boundaries of attraction L0 < L1 < L2 < � � � < LN�1 <

LN satisfying Lk�1 < ½Ak� < Lk for k ¼ 1; � � � ;N. This means that
whenever Lji > Lk the activation variable Aji jumps from state ½Ak�
to ½Akþ1�. Similarly, if Lji < Lk the activation variable Aji jumps from
state ½Akþ1� to ½Ak�. Moreover, after a jump of activation level [A] oc-
ba
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Fig. 3. Maturation phases of simulated ontogenesis of a pseudo-cortical area. (a) At
time Tap the massive cell death occurred and the dead cells (grey crossed circles)
disappear. (b) At time TSTDP the processes characteristic of spike timing dependent
plasticity began to modify the synaptic weights (different arrow thicknesses). (c)
The external input reaches the input layer of the network at time Tstim; the synaptic
pruning is affecting cells (grey circles) that remain without excitatory inputs. (d) At
any time now synaptic and cell pruning are driven by STDP.
curred at time t the real-valued variable Lij is reset to
Lijðt þ 1Þ ¼ LkþLkþ1

2 .
Spike timing dependent plasticity (STDP) defines how the value

of Lji at time t is changed by the arrival of pre-synaptic spikes, by
the generation of post-synaptic spikes and by the correlation exist-
ing between these events. On the generation of a post-synaptic
spike (i.e., when Si ¼ 1), the value Lji receives an increment which
is a decreasing function of the elapsed time from the previous
pre-synaptic spike at that synapse. Similarly, when a spike arrives
at the synapse, the variable Lji receives a decrement which is like-
wise a decreasing function of the elapsed time from the previous
post-synaptic spike (i.e., when Sj ¼ 1). More details on the STDP
rule can be found elsewhere (Iglesias et al., 2005).

The activation levels of (exc, exc) and (exc, inh) synapses were
allowed to take one of the values AjiðtÞ ¼ f0;1;2;4g. If AjiðtÞ ¼ 0 a
projection was permanently pruned out. The projections from
and to the units that died during the apoptotic phase underwent
a decay of their synaptic weight without any chance of recovery,
thus eventually leading to the cell pruning when the activation le-
vel of all their synapses reached AjiðtÞ ¼ 0. The loss of all excitatory
inputs provoked the cell death and these units stopped firing (even
in presence of background activity) immediately after the pruning
of the last excitatory afference from within the network. It is
important to notice that some units that survived the apoptotic
phase could die at later time because they remain without viable
excitatory inputs due to synaptic depression. Other projections
could be pruned if synaptic depression driven by STDP occurred
leading to AjiðtÞ ¼ 0 without necessarily leading to cell death. This
is the phase when competition between the inputs occur and most
of the exuberant connections disappear.

2.6. Content-related Stimuli

The first sensory inputs were fed into the network approxi-
mately at the same time (Fig. 3c) when spike timing dependent
plasticity was enabled. Patterned activity organized both in time
and space getting into the ‘‘input layer” of the network is assumed
to correspond to content-related activity conveyed by the ascend-
ing sensory pathway and by activity generated elsewhere in the
brain. Each stimulus lasted 100 ms and was followed by a period
without stimulation that lasted 1900 ms (rate of stimulation was
0:5 stim=s).

The spatial organization of the stimulus was described else-
where (Iglesias and Villa, 2007) and briefly summarized as follows.
The sets A and B of units of the input layer were divided into 10
groups of 40 units each, A ¼ fA1;A2; . . . ;A10g and B ¼ fB1;B2; . . . ;

B10g. During the first millisecond of the AB stimulation all 40 units
belonging to the set A1 received a large depolarization that induced
a spike if the unit was not in a refractory period. At the next milli-
second each unit belonging to the set A2 was strongly activated and
so forth until the units of set A10 were activated. The entire se-
quence of activation A1A10 lasted 10 ms and was repeated five
times, followed by five times the entire sequence B1B10. A stimulus
labeled BA was generated in a similar manner with five times the
sequence B followed by five times the sequence A.

2.7. Spike train analysis

A spike train is composed by the time series of spike occur-
rences and is considered as a point process. Spike trains from all
active cells were recorded for off-line analysis. The Poisson back-
ground noise alone could provoke a unit to fire whenever the excit-
ability was close to the threshold. The other spikes were generated
by the convergence of synchronous activity (i.e., temporal summa-
tion of excitatory post-synaptic potentials) generated within the
network. In order to study the activity that is produced within
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the simulated network those spikes associated to the background
process were recorded separately and discarded from the raw
spike trains such to extract the so-called ‘‘effective spike trains”
(Hill and Villa, 1997).

The effective spike trains were searched for the occurrence of
spatiotemporal firing patterns following the ‘‘pattern grouping
algorithm” PGA (Tetko and Villa, 2001). For the present study,
the pattern grouping algorithm was used to find patterns of at least
3 spikes (triplets), with a minimal significance level of 10%, repeat-
ing at least seven times in the interval [1–100] s, provided the en-
tire pattern lasted not more than 800 ms and was repeated with an
accuracy of ±5 ms.
time [ms]

Fig. 4. Ratio of surviving units as a function of time with respect to initial
conditions: 8000 excitatory units (plain line) and 2000 inhibitory units (dotted
line). In this simulation, the apoptosis was stopped after 800 time steps ðTedp ¼
800Þ. Thin lines correspond to the fitting against the probability function PdeathðtÞ
with lags: 120 ms ðR2 ¼ 0:9797Þ and 190 ms ðR2 ¼ 0:9902Þ for the excitatory and
inhibitory units, respectively.
3. Results

Each simulation run lasted 100,000 discrete time steps ðTendÞ,
with one time step corresponding to 1 ms in the model. The states
(spiking/not spiking) of all units were updated synchronously.
Starting at time zero and throughout all the simulation run each
unit received a background activity following an independent Pois-
son process of 5 sp/s on average.

The early developmental phase, characterized by apoptosis be-
gan at time t ¼ 0 and lasted until t ¼ Tedp. Notice that the excit-
atory/inhibitory ratio was equal to 4/1 at t ¼ 0. Two different
durations of the early developmental phase were investigated
here: Tedp ¼ 700 and 800 time steps. The spike timing dependent
plasticity was enabled at t ¼ Tedp þ 1. At time t ¼ 1001 ms the first
stimulation, lasting 100 ms, was applied, then until t ¼ 1100 ms.
Between t ¼ 1101 ms and t ¼ 3000 ms only the background activ-
ity was getting into the network. At time t ¼ 3001 ms another
stimulation was applied and so forth until the end of the simula-
tion run. Overall this corresponded to 50 presentations of the stim-
ulus along one simulation run. The stimuli AB and BA appeared in
random order as described elsewhere (Iglesias and Villa, 2007). The
simulated activity of one same network (i.e., generated by the
same ‘‘genetic rules”) was repeated five times using five different
random generator seeds. Indeed, each seed produced different
background activity that affected the early faith of cells and synap-
tic pruning. Each simulation run was performed with and without
apoptosis and the corresponding effective spike trains were re-
corded and analyzed.
-6

-4

-2

 0

 2

 4

 6

 0  10  20  30  40  50
discharge rate [s-1]

di
ffe

re
nc

e 
[%

]

Fig. 5. Bin-to-bin difference of the distribution (relative frequency) of the neuronal
firing rates recorded in the network that experienced apoptosis minus the
distribution of firing rates of the very same network when apoptosis was not
enabled. Bin size: 2 spikes/s. Notice that the apoptotic experience provoked a
decrease in the number of neurons that fired less than 4 spikes/s and an increase in
the number of those that fired between 6–12 and near 30 spikes/s.
3.1. Activity-related cell death

Fig. 4 shows the evolution of the number of excitatory and
inhibitory units during the initial 1000 time steps that followed
the maximum development of the exuberant connectivity. During
the first 800 time steps, all units with mean firing rates exceeding
FRM could die by apoptosis with the probability expressed by
PdeathðtÞ (Eq. (1)). The survival dynamics was linearly fit with the
probability function and showed that the inhibitory units ex-
pressed the apoptotic behavior about 70 time steps earlier than
the excitatory units. At time t ¼ 1000 ms STDP-driven synaptic
pruning was enabled. With STDP the synaptic weights could be-
come so weak to provoke synaptic pruning and, in some cases,
the loss of all excitatory inputs to a unit and its subsequent death
at a longer time-scale.

The effect of a shorter period of apoptosis was studied only with
Tedp ¼ 700 time steps. Such shorter apoptotic phase provoked the
death of 956 excitatory and 302 inhibitory units. With Tedp ¼
800 ms apoptosis affected 1355 excitatory and 416 inhibitory
units. By the end of the apoptotic phase the ratio of excitatory/
inhibitory units increased to 4.15/1 and 4.19/1 with Tedp equal to
700 and 800 time steps, respectively. The firing rate of all surviving
excitatory units not belonging to the input layer was computed to-
wards the end of each simulation run in the 1000 time steps inter-
val immediately preceding the last stimulus presentation (i.e.,
between Tend � 2000 < t < Tend � 1000 ms).

The average activity (mean ± SEM) of the excitatory units was
4:6� 1:9 spikes=s with Tedp ¼ 700 ms, and 5:0� 2:0 spikes=s with
Tedp ¼ 800 ms. In absence of any apoptosis the average activity
was 4:3� 1:7 spikes=s. Fig. 5 shows the differential histogram
(bin-to-bin difference) between the distributions of the firing rate
in presence and in absence of apoptosis with Tedp ¼ 800 ms. This
histogram emphasizes the fact that almost 10% of the overall excit-
atory units shifted their firing rate from frequencies below
4 spikes/s to higher rates, thus accounting for the global increase
of average activity mentioned above.

3.2. Spatiotemporal firing patterns

At time t ¼ Tend for each simulation run obtained with a differ-
ent random generator seed we selected the units characterized by
at least five active excitatory afferences from within the network
but the input layer. These units were called interconnected units.
The effect of introducing the apoptosis in the simulated neural
development is summarized in Table 1. This table shows that the
number of interconnected units decreased by almost half with
apoptosis ðn ¼ 578 vs: 1180Þ despite the overall number of excit-
atory units decreased by 12%.

The effective spike trains of the interconnected units were
searched for spatiotemporal firing patterns that repeated more



Table 1
Cumulated data over five simulation runs obtained with different random generator
seeds. The average data about recurrency, pattern duration and interspike intervals
report mean ± SEM values per pattern.

Apoptosis Enabled Disabled

Total number of exc units 31710 36110
Interconnected units 578 1180

Total number of patterns 9 30

Triplets (N) 7 13
Pattern recurrency 56.6 ± 7.0 18.9 ± 5.5
Pattern duration (ms) 587.3 ± 58.5 583.8 ± 46.3
Interspike interval (ms) 293.6 ± 57.1 291.9 ± 34.2

Quadruplets (N) 2 17
Pattern recurrency 18.5 40.8±5.9
Pattern duration (ms) 766.5 591.5±33.8
Interspike interval (ms) 255.5 197.2±22.9
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than seven times. All patterns except one were formed by occur-
rences of the same unit, referred to as single-unit patterns. In pres-
ence of apoptosis only nine patterns were found, seven
corresponding to triplets and two to quadruplets (Table 1). The
overall pattern duration was on average close to 580–590 ms in
all experimental conditions. The variabilities of the pattern tempo-
ral structure (duration and interspike intervals) in presence of
apoptosis were larger but not significantly different, maybe due
to the small samples size. A relevant difference in spatiotemporal
firing patterns dynamics with or without apoptosis lies in the aver-
age recurrency per pattern. Table 1 shows that in case apoptosis
was present in the neural development a triplet repeated more
than 50 times during one simulation run, while it repeated less
than 20 times without apoptosis. This difference, although impres-
sive, is yet not significant (v2-test) due to the small samples size.

Appearance and disappearance of patterns was due to develop-
mental changes shaped by STDP in the network connectivity
underlying the process of temporal information. Fig. 6 shows ex-
treme cases of onset dynamics of single-unit patterns observed
in the absence of apoptosis. In one case a triplet appeared early
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Fig. 6. Spatiotemporal firing pattern h148C,148C,148C; 191 ± 0.9,698 ± 1.0i that repeate
4.0 spikes/s. Raster plot (a) of the patterns aligned on the pattern start and raster plot of
occurrence; Spatiotemporal firing pattern h554,554,554,554; 236 ± 0.7,301 ± 0.8,358 ± 0
s. Raster plot (c) showing 13 repetitions and raster plot of pattern onset (d).
in the network maturation and disappeared after t � 35;000 ms
(Fig. 6a and b). The single-unit pattern h148C,148C,148C; 191�
0:9; 698� 1:0i was composed by spikes produced by unit #148C.
This notation means that a precise firing sequence started with a
spike of unit #148C, followed 191 ± 0.9 ms later by a second spike
of the same unit, and followed by a third spike 698 ± 1.0 ms after
the first. In the opposite case another pattern (a quadruplet in this
example) appeared only at a later stage of maturation after
t � 65; 000 ms (Fig. 6c and d).

The simulation conditions with apoptosis during the early
phase of the development did not produce such extreme appear-
ance and disappearance lags. We selected one quadruplet and
two triplets among the nine detected precise firing sequences to
show representative features of patterned activity. The dynamics
of the onset times of each pattern was studied at three develop-
mental periods that we have arbitrarily subdivided as early
ð1 6 t < 50 sÞ, mature ð50 6 t < 75 sÞ and late ð75 6 t < 100 sÞ.

The precise firing sequence h214F,214F,214F,214F; 74 ±
4.5,682 ± 2.5,798 ± 3.0i was a single-unit pattern formed by spikes
of unit #214F (Fig. 7a). Between t ¼ 1000 ms and t ¼ Tend, 17 rep-
etitions of this pattern were observed. The statistical significance of
the excess of pattern occurrence computed by the pattern grouping
algorithm (Tetko and Villa, 2001) was P ¼ 3:9� 10�2. The autocor-
relogram was always computed to determine if some strange
internal dynamics could be at the origin of patterned activity. In
general the autocorrelogram was characterized by a flat curve with
an initial trough. The trough indicates a refractory period and the
flatness of the curve indicates the tendency to fire following a Pois-
sonian distribution and not in bursts. We looked for a potential
correlation between the stimulus onset time and the onset times
of the pattern occurrences. This pattern tended to appear in the
500 ms that immediately followed the stimulation onset (Fig. 7d)
despite the fact that no sharp response was observed in the peri-
stimulus time histogram (Fig. 7c).

Another interesting feature to observe in the quadruplet
h214F,214F,214F,214F; 74±4.5,682 ± 2.5,798 ± 3.0i is the distribu-
tion of pattern onset times along the simulation run (Fig. 7e). We
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found that 9/17 occurrences occurred during the early ðt < 50 sÞ,
five during the mature and three during the late period. One time
in the interval [1–25] s, eight times in [25–50] s, and eight times
in [50–100] s. This might suggest that the network dynamics giving
rise to the pattern appeared early and was slowly disrupted by the
continuous STDP-driven pruning. The distribution of pattern
occurrences was tested against a linear regression with serial cor-
relation between the residuals by the Durbin–Watson (DW) test
(Durbin and Watson, 1971; Draper and Smith, 1998) characterized
by a statistic value d and the sample size n. The smaller the value of
d the stronger the serial correlation. Fig. 7f shows that the distribu-
tion of pattern occurrences is not regularly distributed along the
regression line. Indeed DW-test ðd ¼ 0:4864; n ¼ 17Þ indicates suc-
cessive error terms are, on average, positively correlated with sig-
nificance P � 1%.

The pattern h16A3,16A3,16A3; 274±4.5,708±1.5i was observed
41 times (Fig. 8a) between t ¼ 1000 ms and t ¼ TendðP ¼ 4:2�
10�2Þ. This unit was clearly responsive to the stimulus as indicated
by its peri-stimulus time histogram (Fig. 8c) but the pattern onset
was not triggered by the stimulus (Fig. 8d). The pattern occurred
more frequently towards the end of the simulation run, during
the mature and late periods. This might suggest that the changes
in the network dynamics, induced by the continuous STDP-driven
pruning, lead to a transient state between 50 and 75 s when the
appearance of this pattern was particularly favored. The linear
regression on the pattern occurrence (Fig. 8f) was significant
ðP � 1%Þ and the Durbin–Watson test on the residuals
ðd ¼ 0:3884;n ¼ 41Þ indicated that successive error terms were
positively correlated ðP � 1%Þ, too. Furthermore, notice that the
patterns tended to occur in bursts.

The triplet hBDC,BDC,BDC; 82 ± 3.5,687 ± 5.5i recurred 56
times before Tend (Fig. 9a). with a high level of significancy ðP ¼
4:5� 10�5Þ. The autocorrelogram (Fig. 9b) shows a broad hump
after the initial trough due to the refractory period. This hump
indicates a moderate tendency to fire in bursts. No correlation
could be found between the timing of the spatiotemporal pattern
and the stimulation onset (Fig. 9d). Conversely, the pattern oc-
curred preferentially late in the simulation run (i.e., 12 times in
the interval [1–50] s, 22 times in [50–75]s, and 22 times in [75–
100]s, Fig. 9e). Serial correlation of the pattern occurrences was
also revealed by the Durbin–Watson test on the residuals
ðd ¼ 0:1376;n ¼ 56; P � 1%Þ. This triplet is interesting not only
for its high number of repetitions, but also for the fact that the net-
work dynamics giving rise to its emergence was maintained for the
last 50 s of simulation despite the continuous STDP-driven prun-
ing. The raster plot (Fig. 9a) suggests even the ‘‘build-up” of a more
complex pattern, starting at t � 60000 ms (horizontal arrow), that
consisted in a superpattern with an additional event of unit #BDC
that occurred approximately 300 ms (vertical arrow) before the
triplet onset.
4. Discussion

We simulated a large scale spiking neural network character-
ized by a brief initial phase of apoptosis that extended our previous
model (Iglesias and Villa, 2007). During this phase the units that
exceeded a certain threshold of firing had an increasing probability
to die with the passing of time until Tedp equal to 700 or 800 time
units (depending on the simulation runs). The rationale of this rule
is that a very high activity of the excitatory cells is assumed to re-
lease excessive levels of glutamate, which is the excitatory neuro-
transmitter considered in our simulations. Glutamate is not only
known to provoke neurotoxicity (Choi et al., 1988) but is likely
to be involved in triggering apoptosis (Jiang et al., 2000; Zieminska
et al., 2003; Schelman et al., 2004). At the end of this apoptotic
phase spike timing dependent plasticity (STDP) and synaptic prun-
ing were enabled. Then, cell death could occur only if a unit be-
came deafferented of its excitatory inputs after synaptic weights
were depressed to zero following STDP. The comparisons of net-
work activity were performed in presence of regular repetitions
of a spatially and temporally organized external input (Iglesias
and Villa, 2007).
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It was an obvious observation that the introduction of apoptosis
left less cells surviving at the arbitrary end of the simulation set at
100,000 time units. It was less obvious to observe that the average
firing rate of the surviving cells was moderately increased (from
4.3 to 4.6 and 5.0 spikes/s with Tedp ¼ 700 and Tedp ¼ 800, respec-
tively). These differences are probably due to the fact that the
death of inhibitory cells due to apoptosis began about 70 time
steps before the death of excitatory units. As a consequence, the
excitatory/inhibitory (E/I) balance was modified such to leave a
higher ratio of excitatory connections at the time STDP was en-
abled. Despite the overall decrease in number of excitatory connec-
tions the change of E/I balance is likely to be the cause of the
increase in firing rate after apoptosis.
We recorded the spike trains of all excitatory units that were
not directly receiving afferences from the external input and we
searched for precise firing sequences that occurred beyond random
expectation with the PGA algorithm (Tetko and Villa, 2001). The re-
sults show that after apoptosis the number of precise firing se-
quences was reduced but their structure and dynamics was
modified.

Firstly, we observed more triplets than quadruplets after apop-
tosis. This is in agreement with most experimental results in this
field (Abeles and Gerstein, 1988; Villa and Abeles, 1990; Abeles
et al., 1993; Prut et al., 1998; Villa et al., 1999; Tetko and Villa,
2001; Ben-Shaul et al., 2004; Villa, 2005). The fact that more qua-
druplets than triplets were found in absence of apoptosis is prob-
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ably due to the estimation procedure for pattern significance
implemented by PGA. The procedure of PGA tended to underesti-
mate triplets in order to emphasize the avoidance of detecting spu-
rious precise firing sequences even if this would provoke the
rejection of truly significant patterns. It is assumed that a signifi-
cant pattern formed by four events (a quadruplet) should give birth
to some significant triplets among its subpatterns. The rationale is
that due to the ‘‘noisy” background activity embedded in the over-
all network activity there are less chances to detect a quadruplet
than a triplet. In our simulations we are certainly far from imple-
menting a background activity with natural characteristics and
we do not have the ‘‘noise” introduced by the experimental spike
sorting procedure.

Secondly, we observed a much higher number of repetitions of
precise firing sequences after apoptosis (about 57 vs. 19, on aver-
age). This suggests that the firing patterns that emerge after apop-
tosis are likely to be more stable. This is a very important
observation in view of attempting to raise an hypothesis of the
functional outcome provoked by the death of exuberant cells and
connections during neural development (Innocenti and Price,
2005). We assume that developmental and/or learning processes
are likely to potentiate or weaken certain pathways through the
network and let emerge cell assemblies characterized by precise
firing sequences (Abeles, 1991). We suggested that the detection
of such firing patterns could be associated with the emergence of
functionally defined cell assemblies from the initially locally con-
nected random network (Iglesias et al., 2005). The emerging con-
nectivity within these cell assemblies would be the mean to
preserve and process accurate temporal information within the
network. The example reported in Fig. 9 suggests that the modifi-
cations in connectivity induced by cell death and synaptic pruning
are part of a dynamical process that ‘‘builds up” as time runs and
are therefore difficult to nail down.

There are evidence that feed-forward chains of neurons with
diverging–converging connections may correspond to the topology
of cell assemblies (Abeles et al., 2004) and we are investigating in
this direction (Turova and Villa, 2007). However, there are also evi-
dence suggesting that precise firing sequences might be controlled
by attractors emerging out of the deterministic nonlinear dynamics
of the network (Villa, 2000; Asai et al., 2006). The self-organization
of spiking neurons into cell assemblies was reported in other stud-
ies of large simulated networks connected by STDP-driven projec-
tions (Izhikevich et al., 2004). These authors emphasized the
emergence of spontaneously self-organized neuronal groups, even
in absence of correlated input, associated with the spatiotemporal
structure of firing patterns, if axonal conduction delays and STDP
were included in the model. They suggest these self-organizing
groups generate stereotypical patterns of activity with millisecond
precision through a mechanism called ‘‘polychronization” (Izhike-
vich, 2006). In our view it is difficult to rule out one or another
hypothesis at this stage. Further investigation is required in partic-
ular about the conditions necessary to support the emergence of a
pattern of diverging–converging connections in the developing
brain.

Our simulation results should be considered preliminary for
many reasons. Among those we point out the fact we analyzed only
a reduced number of simulation runs and we still need to investi-
gate in depth the dynamics of the topological changes that occur in
the developing network. There is an increasing interest in investi-
gating the cortical circuits and their synaptic connectivity with a
statistical approach related to graph theory (Chialvo, 2004; Sporns
et al., 2004). Results obtained from layer 5 neurons in the visual
cortex of developing rats indicate that many aspects of the connec-
tivity patterns differ from random networks (Song et al., 2005). In
particular, the distribution of synaptic connection strengths in
those cortical circuits show an over-representation of strong syn-
aptic connections correlated with the over-representation of some
connectivity patterns. (Song et al., 2005) suggest that the local cor-
tical network structure could be viewed as a skeleton of stronger
connections in a sea of weaker ones.

In conclusion, we have presented new data to interpret the find-
ing of precise firing sequences supported by a simulation frame-
work of neural development. We have found evidence that
apoptosis during early brain development is likely to play an
essential role to let emerge cell assemblies that are more stable
to sustain processing of temporal information. The framework that
was presented here offers also the possibility to study the effect of
genomic expressions patterns embedded in large spiking neural
networks. This investigation will probably represent a complemen-
tary field of study to neural dynamics in an attempt to raise and
test more refined hypotheses to understand information process-
ing during neural development.
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