
 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
x

y

x

y

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

30 mV 40 mV 50 mV 60 mV

Dynamic properties of large scale networks determined by synaptic 
pruning associated to Spike-Timing Dependent Plasticity.
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ABSTRACT

Massive synaptic pruning following over-growth is a general feature of mam-
malian brain maturation. Trigger signals able to induce synaptic pruning could 
be related to dynamic functions that depend on the timing of action potentials. 
We studied the emergence of structured connections in a simulated pruning 
after over-growth development experiment over a long period of time with a 
locally connected random network of 10,000 integrate-and-fire units (80% ex-
citatory and 20% inhibitory) distributed on a 100x100 2D lattice according to a 
space-filling quasi-random Sobol distribution. Edge effects on the borders 
were limited by folding the network as a torus. Excitatory projections were 
dense in a local neighborhood, but low probability long-range excitatory pro-
jections were allowed. Sparse connections between the two populations of 

units were generated according to a two-dimensional Gaussian density func-
tion. Excitatory-excitatory synapses were modified according to a spike-
timing-dependent synaptic plasticity (STDP) rule which implemented both 
long-term potentiation and long-term depression. The synaptic strengths 
were changed by discrete steps. Network activity was recorded as a multi-
variate time series akin of multi site multiple spike train recordings at a reso-
lution of 1 ms. The firing pattern of each unit could be characterized by first- 
and second-order time domain analyses. Analyses are aimed at detecting 
synfire chains embedded in the large network. Synfire chains are diverging / 
converging chains of neurons discharging synchronously to sustain the 
propagation of the information through a feed-forward neural network. The 
rationale is that selected synaptic pruning may constitute the mechanism 
which let emerge synfire chains out of randomly connected networks.

All units of the network are simulated by a leaky integrate-and-fire neuromimes 
with a Poisson distribution of background activity intervals. Stimulations consist 
in 20 equally separated vertical bars moving from the left to the right of the 2D lat-
tice for 100 ms, followed by a pause of 1900 ms, for the complete duration of the 
simulation. During simulation setup, 10% of the excitatory units were randomly 
chosen all over the surface of the network to receive the stimulation. Whenever 
a moving bar reached the column of an input unit, its membrane was depolarized 
by the addition of an amount, defined as the stimulation intensity, varying be-
tween 30 and 60mV (see Fig. 4).
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Figure 5. Construction of 
differential rasters. By 
substracting the Poisson 
background activity of a cell 
to its time serie, the activity 
produced by the connec-
tions of the network can be 
deduced.

Figure 6. Firing patterns.
We studied the firing pattern of four units from layer 5, highlighted in orange in Fig. 
3. after removing the Poisson distributed random background activity of the unit. 
(a,b): differential rasters for the selected units with 30 and 60mV stimulation (see 
Fig. 5); (c,d): differential crosscorrelograms between units. Note differences be-
tween stimulation intensities. Despite the fact that they don’t share any direct 
common input from the pool, and that they all are on the same layer, some cross-
correlograms are significant, suggesting some kind of temporal relation.

DISCUSSION

At the current state of our research, we have not yet found completely sus-
taining synfire chains emerging from synaptic pruning. Nevertheless, our 
results suggest that these structures may indeed appear in large networks 
as a consequence of unsupervised learning rules and specific stimuli.

Figure 2. Pruning dynamics. The real-valued variable Lji is increased or 
decreased according to the STDP rule schematized in (a). If the value Lji 
reaches one of the boundaries a jump occurs in the integer-valued variable 
[Ak]. At the begin all exc-exc synapses have been set at activation level [A3]. 
(b): Example of potentiation with an increase in synaptic strength that is 
stabilized on the long term. (c): Example of depression with a fast decrease 
in synaptic activation level down to its minimal level, [A1] = 0 which provokes 
the elimination of the synapse. (d): Example of a synaptic link which neither 
affected by potentiation nor by depression, but its efficacy decays down to 
[A1] = 0 according to a time constant. In this study, only excitatory-excitatory 
projections were subject to learning with Aji(t) in {0, 1, 2, 4}. Other connec-
tion types had Aji(t)=1. (e): example of the evolution in time of the learning 
state variable Lji of a sample projection; (f): activation level deduced from e. 
Note that discrete changes in activation level occur whenever Lji(t) reaches 
the lower or upper bounds until the projection is pruned out.

Figure 1. Geometrical features.
Main features of the connectivity for excitatory units (upper row) and inhibi-
tory units (lowerrow). (a,e): Density function of the connectivity for a unit lo-
cated at coordinates 0,0 on a 100×100 2D lattice; (b,f): Example of two pro-
jecting units, one for each class, located at the center of the 2D map. Each 
dot represents the location of a target unit connected by the projecting unit. 
(c,g): Orientation map of the projections of the same example units with 
polar coordinates smoothed  with a bin equal to12. A circular line would rep-
resent a perfect pattern of isotropic connections. (d,h): Cumulative distribu-
tions of the connections. 

Figure 3. Reconstruction of a pool of diverging / converging units. 
From all 8000 excitatory units, we extracted a pool of 49 interconnected 
units that were not directly stimulated during the simulation; (a): All con-
nections within this pool are plotted, with units arranged in layers ac-
cording to a best guess fit of their timing. Note that some units appear in 
more than one layer. They are highlighted in gray. (b): Each unit is rep-
resented as a dot at its position on the 2D torus wrapped lattice. Note 
that some units appear at several layers. 
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4 Figure 4. Position of the interconnected, not stimulated units 
as a function of the intensity of the stimulus. Some units take 
part to the pool with small stimulation intensities and are joined by 
an increasing number of units as the intensity of the stimulation is 
increased. 
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