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introduction: synaptogenesis and synaptic pruning
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modified from Huttenlocher, Synaptic density in human frontal cortex — developmental
changes and effects of aging, Brain Research, 163:195-205, 1979



introduction: existing work

e The memory performance of a network is optimally maximized if,
under limited metabolic energy resources restricting their number
and strength, synapses are first overgrown and then pruned.

Chechik et al., Synaptic pruning in development:
A computational account, Neural Computation, 10(7):1759-77, 1998

e Neuronal regulation might maintain the memory performance of
networks undergoing synaptic degradation.

Horn et al., Memory maintenance via neuronal regulation
Neural Computation, 10(1):1-18, 1998

e STDP has been shown to maintain the postsynaptic input field.

Abbott et al., Synaptic plasticity: taming the beast
Nature Neuroscience, 3:1178-83, 2000



model: network
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Iglesias et al., Dynamics of Pruning in Simulated Large-Scale
Spiking Neural Networks, Biosystems, 79(1-3):11-20, 2005



introduction: leaky integrate and fire neuromimetic model 4

L ® Typel = excitatory 80%
~190 excitations B(1) l_ Tipell = inhibitory 20%
— ‘/rest = -76 [mV]
w(t) S(t) 0, = 40 [mV]
° Tmem = 15 [ms]
trefract = exc:3inh:2 [ms]
A = 5 [spikes/s]
~115 inhibitions n = 50

Vi(t+1) = Vrest[q]Jr(l—Sq;(t))-((Vz-(t)—West[q1)°kmem[q])+z w;i(t)+Bi(t)

J

Si(t) = H(Vi(t) — 04,)
wjz-(t +1) = Sj(t> ' Ajz‘(t) ' P[Qja%’]
Bz(t -+ 1) = Preject(Aqi) " P[QLCIi]



model: STDP and pruning
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model: STDP and pruning
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model: STDP and pruning
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model: STDP and pruning
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model: synaptic adaptation examples
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model: graph considerations

Strongly Interconnected (Sl) units
at the end of the simulation
set of cells (discarding input units)
maintaining k,,; > 3 and k;,, > 3
with strongest activation level (A4;;(t) = 4)
with units with the same properties.

Neighbourhood
all excitatory units (including input units)
with at least one projection to or from Sl-units.



results: circuit

Iglesias et al., Emergence of Oriented Cell Assemblies
Associated with Spike-Timing-Dependent Plasticity, LNCS 3696:127-132, 2005

(4761 )

o =

8120

(5724 7 5724

layer 1 layer 2 layer 3 layer 4 layer 5



results: circuit

Iglesias et al., Emergence of Oriented Cell Assemblies
Associated with Spike-Timing-Dependent Plasticity, LNCS 3696:127-132, 2005
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model: stimulus

t=1 t=2 t=3 t=4 t=5 t=6
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every 2 seconds

10 groups of 40 units activated in sequence (10% input units)

during 100 time steps (5xA + 5xB or 5xB + 5xA)

Animated sequences are available for both stimuli A and B.
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t=duration
(50, 100
or 200 ms)
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model: stimulus (cont.) 10
1 ordered sequence of set A 1 ordered sequence of set B
A, A1o A, Aqo B B1o B B1o A,
1 W/ W/ 1 |//| ¥/ |I/_/l|
A 1T 10 11 " 50 51 60 61 100 A M 2001
_stimulus time steps [ms] stimulus_ _stimulus
onset offset onset



model: cell death mechanisms

11

e apoptosis induced by excessive firing rate
50 ms running window

firing rate threshold:
6ere = 245 sp/s for excitatory units
ginh = 250 sp/s for inhibitory units

death probability function:  Papopt(t) = 0.5-47—4.5.10"%.¢°

T 44-(2.5-1054+6-1073-¢2)
Papopt(t = 100) = 4.5-107°
Papopt(t = 700) = 2.2 - 1077
Papopt(t = 800) =2.9-1077

e apoptosis induced by lack of excitatory afferents

loss of all excitatory inputs due to:
apoptosis of pre-synaptic unit
STDP driving to 4;(t) =0



model: simulation layout
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e 0 <t< {700,800} ms (initial phase)

apoptosis induced by excessive firing rate

e {700,800} <t < 10° ms
Spike-Timing Dependent Plasticity
=- synaptic pruning
= apoptosis induced by lack of excitatory inputs
e t = {1000, 3000, 5000,...} ms
100 ms lasting stimuli

50 presentations (random mix: 50% AB and 50% BA)



results: excitatory vs. inhibitory cell death
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introduction: detection of spatiotemporal patterns of activity
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d simultaneous recording of spike trains
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introduction: detection of spatiotemporal patterns of activity 14

d simultaneous recording of spike trains
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b detection of statistically significant spatiotemporal firing patterns

<A,C,B; At1,At2>

cell#A ! patterns found n=3
cell#B ! expected count N=0.02
cell#C 3 | |

P significance of this pattern
time (ms) | s\ | pr( 3, 0.02) = 1.3:10% < 0.001
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introduction: detection of spatiotemporal patterns of activity 14

d simultaneous recording of spike trains
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b detection of statistically significant spatiotemporal firing patterns

<A,C,B; At1,At2>

cell#A ! patterns found n=3
cell#B | expected count N=0.02
_— 3
cell#C P significance of this pattern
time (ms) | s\ | pr( 3, 0.02) = 1.3:10% < 0.001
At
2
At

1

for methods, see Villa et al., 1999; Tetko and Villa, 2001



introduction: representation of spatiotemporal patterns of activity 15

d simultaneous recording of spike trains
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results: spatio-temporal pattern of activity

stopping firing rate-induced apoptosis at t=700ms

a

<79,79,79;453+3.5, 5424+-2.5>

N lag [ms] +1600
+453 +542
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results: spatio-temporal pattern of activity

stopping firing rate-induced apoptosis at t=800ms

a

<13, 13, 13; 23443.5, 466+-4.5>

N N lag [ms] +1600
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summary

18

e Inhibitory units enter apoptosis
about 70 ms before excitatory units

e death dynamics of both populations followed
the probability function to die Papopt (?)

e addition of cell death to the model
improved stability of the network

stopping apoptosis at 700 ms lead to
larger number of surviving units with lower mean firing rate

stopping apoptosis at 800 ms lead to
smaller number of surviving units with greater mean firing rate

e maintained ability to let emerge cell assemblies
associated to preferred firing sequences



