Available online at www.sciencedirect.com

SCIENCE(&DIRECT°

ELSEVIER BioSystems 79 (2005) 11-20

Sysiains

www.elsevier.com/locate/biosystems

Dynamics of pruning in simulated large-scale
spiking neural networks

Javier Iglesia®?¢*, Jan Erikssof Franois Griz&, Marco Tomassifj
Alessandro E.P. Vill&¢d

2 Information Systems Department, University of Lausanne, Lausanne, Switzerland
b Laboratory of Neuroheuristics, University of Lausanne, Lausanne, Switzerland
¢ Laboratory of Neurobiophysics, University Joseph-Fourier, Grenoble, France
d Neuroheuristic Research Group, 1.S.1. Foundation, Torino, Italy

Abstract

Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. This article studies the
synaptic pruning that occurs in large networks of simulated spiking neurons in the absence of specific input patterns of activity. The
evolution of connections between neurons were governed by an original bioinspired spike-timing-dependent synaptic plasticity
(STDP) modification rule which included a slow decay term. The network reached a steady state with a bimodal distribution of
the synaptic weights that were either incremented to the maximum value or decremented to the lowest value. 2dtdime
steps the final number of synapses that remained active was below 10% of the number of initially active synapses independently
of network size. The synaptic modification rule did not introduce spurious biases in the geometrical distribution of the remaining
active projections. The results show that, under certain conditions, the model is capable of generating spontaneously emergent
cell assemblies.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction ual maturation. Biological mechanisms that regulate
pruning mechanisms involve complex neurochemical
Massive synaptic pruning following over-growth pathways of cell signaling and are not intended to be
is a general feature of mammalian brain maturation reviewed here. Trigger signals able to induce synaptic
(Rakic et al., 1986; Zecevic and Rakic, 199Rjuning pruning could be related to dynamic functions that de-
starts near time of birth and is completed by time of sex- pend on the timing of action potentials. Spike-timing-
dependent synaptic plasticity (STDP) is a change in
the synaptic strength based on the ordering of pre- and
post-synaptic spikes. This mechanism has been pro-
posed to explain the origin of long-term potentiation
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(LTP), i.e. a mechanism for reinforcement of synapses time units (one time unit corresponding to the duration
repeatedly activated shortly before the occurrence of of a spike), and the application of an original bioin-
a post-synaptic spikéelso et al., 1986; Bi and Poo, spired STDP modification rule compatible with hard-
1998; Froemke and Dan, 2002; Kepecs et al., 2002; ware implementatioEriksson et al., 2003; Tyrrell et
Markram et al., 1997)STDP has also been proposed al., 2003) The network is composed of a mixture of
to explain long-term depression (LTD), which corre- excitatory and inhibitory connections that maintain a
sponds to the weakening of synapses strength whenevebalanced input locally connected in a random way.
the pre-synaptic cell is repeatedly activated shortly af-  STDP is considered an important mechanism that
ter the occurrence of a post-synaptic sikarmarkar modifies the gain of several types of synapses in the
and Buonomano, 2002) brain. In this study the synaptic modification rule was

The glutamatergic NMDA receptors were initially applied only to the excitatory—excitatory connections.
identified as the receptor site with all biological features This plasticity rule might produce the strengthening of
compatible with LTP induced by coincident pre- and the connections among neurons that belong to cell as-
post-synaptic cell discharg€g/igstrom and Gustafs-  semblies characterized by recurrent patterns of firing.
son, 1986) The involvement of NMDA receptors in  Conversely, those connections that are not recurrently
timing-dependent long-term depression (tLTD) has activated mightdecrease in efficiency and eventually be
been recently describe@jostrom et al., 2003)Re- eliminated. The main goal of our study is to determine
centinvestigations suggest that glutamatergic receptorswhether or not, and under which conditions, such cell
with AMPA channels and GABAergic receptors may assemblies may emerge from a large neural network
also undergo modifications of the corresponding post- receiving background noise and content-related input
synaptic potentials as a function of the timing of pre- organized in both temporal and spatial dimension. In
and post-synaptic activiti€ékngel et al., 2001; Woodin  orderto reach this goal the first step consisted in charac-
etal., 2003) These studies suggest that several mecha- terizing the dynamics of synaptic pruning in absence of
nisms mediated by several neurotransmitters may existcontent-related input. This first step is described here.
at the synaptic level for changing the post-synaptic po-
tential, either excitatory or inhibitory, as a function of
the relative timing of pre- and post-synaptic spikes. 2. Models and methods

The important consequences that changes in synap-
tic strength may produce for information transmission,

and subsequently for synaptic pruning, have raised an T petwork is a 2D lattice folded as a torus to limit
interest to simulate the activity of neural networks with ;4 edge effect where the units near the boundary re-
embedded synapses characterized by STDer et~ cejyed less input. The size of the network varies be-
al., 1997; Fusi et al., 2000; Hopfield and Brody, 2004) t\een 10x 10 to 100x 100 units. Several types of
The relation between synaptic efficacy and synaptic nits may be defined. In this study we define two types,
pruning (Chechik et al., 1999; Mimura et al_.,_2003) g € {1, 2}, 80% of Type | § = 1) units and 20% of
suggestthattheweaksynapses may be modified and "®Type Il (¢ = 2) units are uniformly distributed over
moved through competitive *learning” rules. Compet-  the network according to a space-filling quasi-random
itive synaptic modification rules maintain the average ggpq distributionPress et al., 199Fig. 7.7.1). A unit
neuronal input to a post-synaptic neuron, but provoke qf gither type may project to a unit of either type, but
selective synaptic pruning in the sense that converg- ggji.connections are not allowed.

ing synapses are competing for control of the timing of  Each unit is assumed to be at the center of a relative
post-synaptic action potentiglSong et al., 2000; Song  op map, with coordinates = 0, y = 0 . The proba-
and Abbott, 2001) bility that another unit located at coordinates ) re-

This article studies the synaptic pruning that oc- ¢ejves a projection is provided by the following density
curs in a large network of simulated spiking neurons  ,nction

in the absence of specific input patterns. The original- (_Zn(xz + y2)>
+ ¢lql

2.1. Network connectivity

ity of our study stands on the size of the network, upto G(x, y) = aj, exp
10,000 units, the duration of the experiment, 1,000,000

2
%q]
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Fig. 1. Main features of the connectivity for Type | unit (upper row) and Type Il unit (lower row). (a, ) Density function of the connectivity
for a unit located at coordinates 0,0 on a 20Q00 2D lattice; (b, f) Example of two projecting units, one for each class, located at the center

of the 2D map. Each dot represents the location of a target unit connected by the projecting unit. (c, g) Orientation map of the projections of

the same example units with polar coordinates smoothed with a bin equél.t& tRcular line would represent a perfect pattern of isotropic
connections. (d, h) Cumulative distributions of the connections. Type | are assumed to represent excitat@y-tn#sd Type Il inhibitory
units § —).

wherex| is the scaling factor for maximal probability The random selection of the target units is run inde-
of establishing a connection with the closest neighbors, pendently for each unit of either type. An example of
o[q is a scaling factors for the skewness and width of the spatial distribution of the projections of one Type
the Gaussian shaped function, afyg) is an uniform I unit, and of one Type Il unit, is illustrated iRig. 1b
probability(Hill and Villa, 1997) The density function ~ andf, respectively. In this example, the Type | urhitd.
defining the probability of the connections is different 1b) projects to 233 units and the Type Il unigig. 1f)
for each type of unit and is illustrated Fig. 1a and projects to 537 units overall. For each unit it is pos-
e. The values of the parameters used for the density sible to illustrate the orientation of its connections in

functions are indicated ifable 1 the 2D lattice by plotting in polar coordinates the de-
Table 1
Parameter list of the main variables used for both types of units fox1000 networks
Variable Type | Typelll Short description
80 20 Proportion in network (%)
[0} 2 0 Uniform connection probability (%)
o 60 20 Gaussian maximal probability (%)
o 10 75 Gaussian distribution width
P 0.84 -1.60 Post-synaptic potential (mV)
Vrest —-78 —-78 Membrane resting potential (mV)
0; —-40 -40 Membrane threshold potential (mV)
trefract 1 1 Absolute refractory period (ms)
Tmem 7 7 Membrane time constant (ms)
Tsyn 14 14 Synaptic plasticity time constant (ms)
Tact 11000 11000 Activation time constant (ms)

See text for details.
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viation from a perfect isotropic distribution. In case of for any At < trefractyy)- FOr a refractory period equal to

an isotropic distribution the orientations would be il- 1 time unit, the state;(r) is a binary variable. In this

lustrated by a circular line around the center. If such simulation we assume that the refractory period is the

line is not circular it shows that some orientations have same for all units of either type. Itis assumed that a unit

been selected preferentially by chance, as it may occur can generate a spike only f§i(r) = 1. The parameter

in a random selection procedure. The orientations of values used for the simulations are listedable 1

the projections of the two example units are illustrated

in Fig. 1c and glt appears that at the single unit level 2.3. Synaptic connections

a large degree of anisotropy exists in the connection

topology. The post-synaptic potential ; is a function of the
Fig. 1dshows the cumulative distribution of all con-  state of the pre-synaptic urfif, of the “type” of the sy-

nections established by Type I units projecting to either napsePy,; ,,1, and of the activation level of the synapse

type. The modes of the histograms show that on aver- A ;. This is expressed by the following equation

age one unit of Type I is projecting to 50 units of Type

Il and to 190 units of Type IFig. lhillustrates the wji(t +1) = S;(0)A i) Pg;.q1-

cumulative distribution of all connections established

by Type Il units and shows that on average one unit of Notice that the “type” of the synapse is a parameter

Type Il is projecting to 115 units of Type Il and to 460 that depends on the types of units in the network. In

units of Type I. the current study we assume ttRy 1}, i.e. (Type I—
Type 1), andP(; 2 connections, i.e. (Type+ Type Il),

2.2. Neuromimetic model are of the same kind. The same assumption was made
for P2 1) and P2 2] connections.

All units of the network are simulated by leaky In order to maintain a balanced level of depolar-
integrate-and-fire neuromimes. At each time step, the ization (excitatory) and hyperpolarization (inhibitory)
value of the membrane potential of tith unit, V;(r), the Type | unit was considered as excitatory and Type
is calculated such that Il as inhibitory. We setP(1,1; = Pj1,2) = 0.84mV and
Vilt + 1) = Viestyg + Bilt) + (L — Si(0) P =Pz =-10mV.

X ((Vi(t) = Vrestig])kmemp]) + Z w;i (1) 2.4. Synaptic modification rule

J
It is assumed a priori that modifiable synapses are

where Vresp) corresponds to the value of the resting 44 cterized by activation levelst with N attrac-

potential for the units of class typg][ B;(¢) is the tor states fi1] < [A2] < --- < [Ay]. Activation lev-
background activity_ arriving to théh unit, S;(r) is els of type [11] synapses arénteger-valued lev-
the state Of the unit as eXpressed bel@Wemb] = eIS Aji(t)u W|th Ajl(t) c {[Al] — 0’ [AZ] — 1’ [A3] —
exp(1/tmemp)) is the constant associated to the cur- 2,[A4] = 4). Index is referred to as the pre-synaptic
rent of leakage for the units of class typg [wji(r) are it and index as the post-synaptic unit. We assume
the post-synaptic potentials of thigh units projecting  ,5¢ host-synaptic potentials generated by synapses of
to theith unit. o _ type [1, 1] correspond to synaptic currents mediated by
The state of a unis;(r) is a function of the mem-  \\pa giutamatergic receptors. These discrete levels
brane potential’(r) andathreshold potentl%]i, such could be interpreted as a combination of two factors:
that;(r) = H(Vi(r) — bq;,)- H is the Heaviside func- 0 hymber of synaptiboutonsbetween the pre- and
tion, H(x) = 0 :1x < 0,H(x) = 1:x = 0.Inaddition, 5 sunaptic units and the changes in synaptic con-
the state of the unit depends on the refractory period ductance as a result of &ainflux through the NMDA
frefractiy], SUch that receptors. In the current study we attributed a fixed
activation level (that means no synaptic modification)
w&(;) Aji(t) = 1,t0exc — inh, inh — exc, andinh — inh

Si(t + Ar) =
l frefractly] synapses.
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A real-valued variableL () is used to imple-  wheretsyny, is the synaptic plasticity time constant
ment the spike-timing dependent plasticity rule for characteristic of each type of unit aifhaxy,) was set
Aji(¢), with integration of the timing of the pre-  Mmax,] = 2 for all units of either type in this study. In
and post-synaptic activities. The variableg(r) are the case that neither the pre- nor the post-synaptic unit

user-defined boundaries of attractiofn< L1 < Ly < is firing a spike, the real-valued variable will decay

- < Ly_1 < Ly satisfying L;,_1 < [Ax] < Ly for with a time constantacty;.q] = €XP (~1/7actly;.q:])
k=1,..., N.This means that whenever; > L, the characteristic for each type of synapse, such that the
activation variabled ;; jumps from stated ] to [Ay441]. final equation is the following:

Similarly, if L ; < Ly the activation variabld ;; jumps L D= LNk

from state 1] to [Ax]. Moreover, after a jump of it +1) = Lji(kactyg;.q1

acti_vation Igvel [A] occurred at time the real-valued + (Si(M (1)) — (S;(€)M;i(1)).
variableL;; is reset toL;;(t + 1) = Ly + Li+1/2. -

Spike-timing dependent plasticity (STDP) defines In thg present St“‘?'y the differences between the
how the value ofL ; at timet is changed by the ar- user defined boundarids, were all equal, such that
rival of pre-synaptic spikes, by the generation of post- 2L« = Lk — Li—1 = 20 for any attractor state].
synaptic spikes and by the correlation existing between At the begin of the simulation all modifiable synapses

these events. On the generation of a post-synaptic spikeVere Set to activation levelig] = 2.Fig. 2aillustrates
(i.e.,whens; = 1), the valueL ; receives aincrement a case when the synaptic link receives a potentiation
which is a decreasing function of the elapsed time from determined by the STPD rule described above. The
the previous pre-synaptic spike at that synapse. Simi- activation variable jumps fromAs] to [A4] and sta-
larly, when a spike arrives at the synapse, the variable bilizes at highest actlvat!on Iev_eﬂi.lg. 2billustrates a
L ; receives alecrementvhich is likewise a decreasing ~ €aS€ When the synapse is continuously depressed such
function of the elapsed time from the previous post- that the activation variable jumps from] to [A2],
synaptic spike (i.e., whes; = 1). This rule is summa- and then from{lz] to [Al.] faster than its sponFaneous
rized by the following equatiort. ;( + 1) = L (1) + decay, determined by time constdaty, 4. Fig. 2¢
(Si(6)M ;1)) — (S;()M; (1)), wheresS; (1), S;(r) are the illustrates a case when the synapse is neither depressed
state variables of thih andjth units and/; (r) M(1) nor potentiated and the activation level spontaneously
are interspike decay function®; () may be viewed as ~ d€cay down to the minimal level.
a “memory” of the latest interspike interval, . )

2.5. Synaptic pruning

M;(t + 1) = Si(1))M, : . - . .
3 ) () Mmasa No generation of new projections is allowed in the

+ (1 — Si(0))(Mi(r) exp(1/Tsyni])) present study, although specific rules could be defined
L4 L4 L4
A4
Ls |_3 .................................................. |_3 ..................................................
L2 12 SO L2 >
|_1 .................................................. |_1 ................................................. |_1
Lo Lo Lo
(a) time (b) time (c) time

Fig. 2. Pruning dynamics. Theal-valued variableL ; is increased or decreased according to the STDP rule. If the ¥gJueaches one of

the L, user-defined boundaries a jump occurs initlieger-valued variablgA;]. At the begin all € — €) synapses have been set at activation

level [A3]. (a) Example of potentiation with an increase in synaptic strength that is stabilized on the long term. (b) Example of depression with
a fast decrease in synaptic activation level down to its minimal lexgl, £ O which provokes the elimination of the synapse. (c) Example of a
synaptic link which neither affected by potentiation nor by depression, but its efficacy decays dowh 0 according to the time constant

Tact-
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to this purpose. Synaptic pruning occurs when the ac- Table 2 _
tivation level of a synapse reaches a value of zero. This The scaled parameter values for each networkMize
means that synaptic pruning may occur only for synap- N Size ofy (%) P g (MV)

tic connections of type [11], which are also the most 1 10x 10 9.28 236
abundant, when the activation leve); decreasestoits 2 20x 20 5.84 1.64
minimal value, i.e. A1] = 0. In this case the synapse i igx ig ;‘-gg ﬁg
[Z, j]is eliminated from the network connectivity. : 50 50 217 108
6 60 x 60 2.81 1.01

2.6. Background activity 7 70% 70 253 0.95
8 80x 80 232 0.90

The background activityB;(¢) is used to simulate 9 90x 90 2.14 0.87

the input of afferents to théth unit that are not ex- 10 100 100 2.00 084
plicitly simulated within the network. Let us assume See textfor details.
that each type of unit receivesyy,,] external affer-
ents. In the present study we simplify by setting that all humber of excitatory connections at the beginning of
units receive the same number of external projections the simulations for smaller networks. The level of
and that all of them are excitatory. Namely, we assume Post-synaptic depolarization for excitatory—excitatory
n; = n = 50 and that the post-synaptic potential gener- synapses was scaled &5 ;) = (1+ f — 1/2)Pp,1,
ated by these external afferents is fixed to a value equal So that the strength of these connections was Iarger for
to Pp1,13. In the current case (s@able 9 each external smaller networksTable 2lists the scaled values ¢f‘1
afferent generates an excitatory post-synaptic potential and Pf; ;; we used. Note that the values for= 10
equal to 0.84 mV. correspond to those listed rable 1

We assume that the external afferents are correlated
among them. This means that each time a unit is re- 2.8. Simulation tools
ceiving a correlated input from 50 external afferents its
membrane potential is depolarized to an extentthatwill ~ The simulator was a custom developed, Open
generate a spike. Such external input is distributed ac- Source, C program that relies on the GNU Scientific Li-
cording to a Poisson process which is independent for brary (GSL) for random number generation and quasi-
each unit and with mean ratg. The rate of external  random Sobol distributionimplementations. AMySQL
background activity is a critical parameter. We found database back end stored all the configuration details
that with all previous parameters being kept constant a and logs for later reference. This information was ex-
rate of background activity; < 8 spikes/sisunableto tracted and formatted by a set of PHP Web scripts to
sustain any activity at all. In the present study we have monitor the status of the simulations and create new

set the Poisson input to a rate= 10 spikes/s. ones. With our current implementation at the Univer-
sity of Lausanne, a 10,000 units network simulation for
2.7. Network size aduration of 1x 10P time steps lasted approximatively

8 h, depending on the network global activity.

We investigated the pruning dynamics with net-
works of different sizes. The smallest network was de-
fined by 10x 10 units and the largest network stud- 3. Results
ied here was 10& 100 units, i.e. (10< N)?2, with
N e {1,...,10}. To compensate for the changes in All synapses of type [11], i.e. (exc — exc) were
the balance between excitation and inhibition induced initialized with A;;(r = 0) = [A2]. In presence of back-
by the change of size, we introduced the scaling fac- ground activity only, most synapses were character-
tor f = </10%/(10 x N)2, whereN is the size as de- ized by a decrement of the activation level. After a
scribed before. The uniform probability for an excita- long time,r = rsteady the network activity is stabilized
tory unit to project to any other unit of the network was and STDP does not modify any more the activation
scaled according tcb[l] fo, leading to a larger  level of the synapses. At time= fseadqymost modifi-
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100 .. ' : 3.2. “Seed” effect
S A simulation study that relies on large use of ran-
<? domly generated numbers may fall into local minima
g or spurious attractors simply by chance. It was nec-
§ 101575 essary to assess the effect of the seed of the random
< g number generator on our simulation. The most critical
[7) --m- 5 . .
2 +-8 effegt of the randor_nl_z_atlon may occur at the very be-
g a8 ginning, when the initial network topology is created
10 according to the density functions of the connections
! o P 108 of the different types of units. The very same simula-

time steps tion, with the parameter set describedTable 1was
repeated 100 times using different random seeds with
Fig. 3. Pruning dynamics averaged ove& 10 simulations for each the largest network size, i.e. 160100 units.

network size. With the proposed size compensation factor, the prun- The choice of the seed had a significant impact on

ing dynamics are comparable for network sizés {4, ..., 10} th | iR tti it d .
Simulations forV = 1 and 2 saturated, suggesting that the compen- 1€ Valu€ Olmax(4] at iMesteady @S IL COUId vary In
sation factor was too large for those two specific sizes. the range [130, 6.03]%. However, as shown by the dis-

tribution of Rmax(a] (Fig. 4), about 90% of these values
able synapses were eliminated and almost all remain- were comprised between 3.0 and 6.0%. Moreover, we
ing active synapses were characterized by the highestnever observed cases with absence of convergence at
possible activation level, i.e A]. We observed that ~ delays as large as= 1 x 10°. This indicates that a

1 = tsteadyCould be as long as= 1 x 10° in several “seed effect” exists but this does not cause changes in
simulation runs. the overall dynamics of synaptic pruning.

Abiasinthe orientation of the connections could oc-
3.1. Network size cur by random choices. In order to test this hypothesis

two cases of extreme values B axj4] Observed in the
Itis interesting to notice that the final ratio of active  distribution ofFig. 4were selected. The first case corre-
synapses Kmax[4]) represented only few percents of sponds taRmaxa] as low asR; = 1.97%. The second
the initial number of synapsefif. 3. In addition, it case corresponds ®maxja] as high ask, = 6.03%.
is important to notice that those connections that reach
the maximal activation level do not necessarily remain

active untilt = tseady Several synapses reached level 25
[A4] after some delay, then their activation level de-
creased down to4;] = 0, at variable speed, and the 20
synapse was eventually eliminated.
It is important that a network be attuned to work = 15
in a range such that background activity is unable to 3
create spurious attractors by STDP. This means that © 10
background activity alone should not create stable con-
nections that would shape the topology of cell assem- 5
blies. The size of the network is critical if the goal is to
detect the emergence of chains of interconnected units 01 23 4756 7
embedded in a large netwofkdg. 3shows that the ratio percentage of synapses [A4]

of active synapses with activation level equal #y] ‘ _
could be as high as 50% of all initial synapses. The final Fi9- 4. Random seed effect on the number of synapses that remain

f active units is much less variable and at a_fter_pru_nlng.Afteh = 1Q0 simulations that used dlfferentseedsthe
perceptage 0 - distribution of Rmax(a] at timer = fsteady= 1 x 108, with bin = 0.5,
Isteadylt IS always less than 10% for networks that did = shows that in the majority of the runs synaptic pruning left 3.0-6.0%
not saturate. active synapses at the maximum levéh].
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For both cases we calculated the deviation from an network stabilized with 30,864 excitatory—excitatory
isotropic connection, as defined previously Fog. 1¢ synapses. The orientation map shows that the devia-
and g for all active synapses, i.e. with an activation tions from an isotropic distribution were equally dis-
level not equal tofi1] = 0. Then we calculated an av- tributed in all directions. Another factor that could be
erage deviation plot that corresponds to the mean of affected by the random choice is the distance from
the orientations computed over all active synapses at source-to-target (calculated as an Euclidean distance
given timest, namely atr; = 1 x 10°, 1, = 2 x 10°, over the 2D lattice) of the remaining projections. The
andt = tsteagy= 1 x 106. histogram of the distribution of these distances Fig 5b
Fig. 5ashows the evolution of the orientation map was normalized with respect to the probability distri-
in the caseR1, when the network stabilizes with  bution of establishing a connection. In this normalized
a low level of active connections. In this example histogram aratio of 1 means that the count is perfectly
the initial numbern of connections at timey was determined by the probability distribution. In the case
n =1,517240. At 1 330,920 synapses remained, of R; we observe that there was a tendency to some
atrp, 172,503 synapses remained, and eventually the deviation from the original probability function, but

50 1.5 50 1.5
s ko) k)
t=1x10°| ¥ o § 10 y o g 10
-50 0.5 -50 0.5
-50 0 50 0 25 50 71 -50 0 50 0 25 50 7
X distance X distance
50 15 50 1.5
s ko)
t=2x10%| ¥ o Yy o £ 1.0
-50 -50 0.5
-50 0 50 0 25 50 7 -50 0 50 0 25 50 71
X distance X distance
50 50 1.5
k)
t=1x10%| ¥ o yo g 10
-50 -50 0.5
-50 0 50 0 25 50 71 -50 0 50 0 25 50 71
(a) X (b) distance (c) x (d) distance

Fig. 5. Random seed effect on the orientation and length of active connections. (a) Average orientation map. A circular line indicates an isotropic
orientation of the projections of a unit ideally located at the center marked by a cross. This simulation correspoR¢ ¢6 Fign 4. The average

deviation from isotropy for all active connections is plotted at various times. The last line correspgag$®0,864 synapses remained active,

all with active state f4], which corresponded to 1.97% of the initial number of synapses atitinfe) Normalized histogram of the length of

the source-to-target projections measured in Euclidean distance in the 2D lattice for simulaanAutat line atrario = 1 indicates that the
distances are totally predicted by the modified 2d Gaussian distribution function described in the &a¢tt{oh 2.1 (c) Average orientation

map corresponding to ruR; of Fig. 4. At tseady93,346 synapses remained active, all with active st fvhich corresponded to 6.03% of the

initial number of synapses at timg (d) Normalized histogram of the length of the source-to-target projections measured in Euclidean distance
in the 2D lattice for simulation rur.
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this variance was the same for any source-to-target dis-ties in the network topology. These singularities could
tance. Inthe casky, the number of initial synapseswas  sustain attractors with unbalanced excitatory/inhibitory
n = 1,512 634 and atsteady 93,346 active synapses  inputs if they were the consequence of content-related
remained. This analysis shows that the “seed” effect inputs(Hill and Villa, 1997) In presence of only back-
does not introduce significant biases neither in the ori- ground noise these attractors would be spurious and
entation, nor in the length of the connections that were could mask input-related features. We observed that
selected by pruning. the reinforcement of few synapses occurred without
geometric distortions in both direction and source-to-
target distance over the 2D lattice. Synaptic pruning
4. Discussion proceeded in an homogeneous and isotropic way across
the network. This result suggests that the implementa-
We assumed a number of simplified hypotheses tion of the current STDP rule is equivalent to random
about the presence of only two types of units, theirleaky pruning and does not introduce spurious biases.
integrate-and-fire dynamics, their distribution and the ~ The present work is currently extended in two di-
dynamics of the transfer functions of the synapses that rections that will be reported in future articles. The
connect these units. With all these assumptions we ob-first direction consists in studying the effect of dif-
served that the network reached a steady state whenferent synaptic transfer functions without changing
the synaptic weights were either incremented to the the other parameters of the simulation. This would
maximum value or decremented to the lowest value. introduce temporally asymmetrical STD@i and
Ourresultis in agreement with the bimodal distribution Wang, 2002) where both time window and effi-
of synaptic strengths observed with a different STDP- cacy changes are different for LTD than for LTP
based mode|Chechik et al., 1999; Song et al., 2000; (Stuart and Hausser, 2001 addition to the mod-
Song and Abbott, 2001Jhis effectis interpreted asthe ifiable synaptic rule it would be interesting to in-
effect of the STDP rule that leads pre-synaptic neurons troduce more realistic transfer functions in all types
to compete for the capacity to drive the post-synaptic of synapse, in particular in the inhibitory synapses,
unit to produce an all-or-none output signal, akinto an to account for modulation frequencies and pre-
action potential. synaptic spike interval distributiofSegundo et al.,
The choice of a 2D lattice topology allowed us to 1995a,b)
study the effect of incrementing the network size from The second extension of this workis the introduction
10 x 10 to 100x 100 units. It was interesting to ob-  of content-related inputs, i.e. spatiotemporal patterns of
serve that the final ratio of synapses that remained ac- discharges associated to selected stifdleles, 1991,
tive (that we labeled herBmax4)) was below 10% of Hopfield and Brody, 2000; Villa, 2000Preliminary
the number ofinitially active synapses. Thisratio varied observations carried out with a simplified version of
only slightly with changes in network si&lacGregor this simulation have demonstrated that these types of
et al., 1995pnd the effect of different random seeds at network may store the traces of time-varying stimuli
the initialization was also limited. On the other hand, such that similar stimuli blurred with noise can evoke
we observed that the ratio of active synapses character-an activity pattern close to the original ofieriksson
ized by the maximum weight could transiently reach etal., 2003; Torres et al., 2003)
a proportion as high as 50% of all initial synapses.
This could indicate that a very large network may not
be necessary for recurrent networks to emerge. Inter- Acknowledgements
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