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Abstract

Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. This article studies the
synaptic pruning that occurs in large networks of simulated spiking neurons in the absence of specific input patterns of activity. The
evolution of connections between neurons were governed by an original bioinspired spike-timing-dependent synaptic plasticity
(STDP) modification rule which included a slow decay term. The network reached a steady state with a bimodal distribution of
the synaptic weights that were either incremented to the maximum value or decremented to the lowest value. After 1× 106 time
steps the final number of synapses that remained active was below 10% of the number of initially active synapses independently
of network size. The synaptic modification rule did not introduce spurious biases in the geometrical distribution of the remaining
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ctive projections. The results show that, under certain conditions, the model is capable of generating spontaneousl
ell assemblies.
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. Introduction

Massive synaptic pruning following over-growth
s a general feature of mammalian brain maturation
Rakic et al., 1986; Zecevic and Rakic, 1991). Pruning
tarts near time of birth and is completed by time of sex-
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ual maturation. Biological mechanisms that regu
pruning mechanisms involve complex neurochem
pathways of cell signaling and are not intended to
reviewed here. Trigger signals able to induce syna
pruning could be related to dynamic functions that
pend on the timing of action potentials. Spike-timi
dependent synaptic plasticity (STDP) is a chang
the synaptic strength based on the ordering of pre
post-synaptic spikes. This mechanism has been
posed to explain the origin of long-term potentiat
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(LTP), i.e. a mechanism for reinforcement of synapses
repeatedly activated shortly before the occurrence of
a post-synaptic spike(Kelso et al., 1986; Bi and Poo,
1998; Froemke and Dan, 2002; Kepecs et al., 2002;
Markram et al., 1997). STDP has also been proposed
to explain long-term depression (LTD), which corre-
sponds to the weakening of synapses strength whenever
the pre-synaptic cell is repeatedly activated shortly af-
ter the occurrence of a post-synaptic spike(Karmarkar
and Buonomano, 2002).

The glutamatergic NMDA receptors were initially
identified as the receptor site with all biological features
compatible with LTP induced by coincident pre- and
post-synaptic cell discharges(Wigstrom and Gustafs-
son, 1986). The involvement of NMDA receptors in
timing-dependent long-term depression (tLTD) has
been recently described(Sjöström et al., 2003). Re-
cent investigations suggest that glutamatergic receptors
with AMPA channels and GABAergic receptors may
also undergo modifications of the corresponding post-
synaptic potentials as a function of the timing of pre-
and post-synaptic activities(Engel et al., 2001; Woodin
et al., 2003). These studies suggest that several mecha-
nisms mediated by several neurotransmitters may exist
at the synaptic level for changing the post-synaptic po-
tential, either excitatory or inhibitory, as a function of
the relative timing of pre- and post-synaptic spikes.

The important consequences that changes in synap-
tic strength may produce for information transmission,
and subsequently for synaptic pruning, have raised an
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time units (one time unit corresponding to the duration
of a spike), and the application of an original bioin-
spired STDP modification rule compatible with hard-
ware implementation(Eriksson et al., 2003; Tyrrell et
al., 2003). The network is composed of a mixture of
excitatory and inhibitory connections that maintain a
balanced input locally connected in a random way.

STDP is considered an important mechanism that
modifies the gain of several types of synapses in the
brain. In this study the synaptic modification rule was
applied only to the excitatory–excitatory connections.
This plasticity rule might produce the strengthening of
the connections among neurons that belong to cell as-
semblies characterized by recurrent patterns of firing.
Conversely, those connections that are not recurrently
activated might decrease in efficiency and eventually be
eliminated. The main goal of our study is to determine
whether or not, and under which conditions, such cell
assemblies may emerge from a large neural network
receiving background noise and content-related input
organized in both temporal and spatial dimension. In
order to reach this goal the first step consisted in charac-
terizing the dynamics of synaptic pruning in absence of
content-related input. This first step is described here.

2. Models and methods

2.1. Network connectivity
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nterest to simulate the activity of neural networks w
mbedded synapses characterized by STDP(Lumer et
l., 1997; Fusi et al., 2000; Hopfield and Brody, 20
he relation between synaptic efficacy and syna
runing (Chechik et al., 1999; Mimura et al., 200,
uggest that the weak synapses may be modified a
oved through competitive “learning” rules. Comp

tive synaptic modification rules maintain the aver
euronal input to a post-synaptic neuron, but prov
elective synaptic pruning in the sense that conv
ng synapses are competing for control of the timin
ost-synaptic action potentials(Song et al., 2000; Son
nd Abbott, 2001).

This article studies the synaptic pruning that
urs in a large network of simulated spiking neur
n the absence of specific input patterns. The orig
ty of our study stands on the size of the network, u
0,000 units, the duration of the experiment, 1,000
The network is a 2D lattice folded as a torus to li
he edge effect where the units near the boundar
eived less input. The size of the network varies
ween 10× 10 to 100× 100 units. Several types
nits may be defined. In this study we define two ty
∈ {1,2}, 80% of Type I (q = 1) units and 20% o
ype II (q = 2) units are uniformly distributed ov
he network according to a space-filling quasi-rand
obol distribution (Press et al., 1992, Fig. 7.7.1). A uni
f either type may project to a unit of either type,
elf-connections are not allowed.

Each unit is assumed to be at the center of a rel
D map, with coordinatesx = 0, y = 0 . The proba
ility that another unit located at coordinates (x, y) re-
eives a projection is provided by the following den
unction

(x, y) = α[q] exp

(
−2π(x2 + y2)

σ2
[q]

)
+ φ[q]
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Fig. 1. Main features of the connectivity for Type I unit (upper row) and Type II unit (lower row). (a, e) Density function of the connectivity
for a unit located at coordinates 0,0 on a 100× 100 2D lattice; (b, f) Example of two projecting units, one for each class, located at the center
of the 2D map. Each dot represents the location of a target unit connected by the projecting unit. (c, g) Orientation map of the projections of
the same example units with polar coordinates smoothed with a bin equal to 12◦. A circular line would represent a perfect pattern of isotropic
connections. (d, h) Cumulative distributions of the connections. Type I are assumed to represent excitatory units (e →) and Type II inhibitory
units (i →).

whereα[q] is the scaling factor for maximal probability
of establishing a connection with the closest neighbors,
σ[q] is a scaling factors for the skewness and width of
the Gaussian shaped function, andφ[q] is an uniform
probability(Hill and Villa, 1997). The density function
defining the probability of the connections is different
for each type of unit and is illustrated inFig. 1a and
e. The values of the parameters used for the density
functions are indicated inTable 1.

Table 1
Parameter list of the main variables used for both types of units for 100× 100 networks

Variable Type I Type II Short description

80 20 Proportion in network (%)
φ 2 0 Uniform connection probability (%)
α 60 20 Gaussian maximal probability (%)
σ 10 75 Gaussian distribution width
P 0.84 −1.60 Post-synaptic potential (mV)
Vrest −78 −78 Membrane resting potential (mV)
θi −40 −40 Membrane threshold potential (mV)
trefract 1 1 Absolute refractory period (ms)
τmem 7 7 Membrane time constant (ms)
τsyn 14 14 Synaptic plasticity time constant (ms)
τact 11000 11000 Activation time constant (ms)

See text for details.

The random selection of the target units is run inde-
pendently for each unit of either type. An example of
the spatial distribution of the projections of one Type
I unit, and of one Type II unit, is illustrated inFig. 1b
and f, respectively. In this example, the Type I unit (Fig.
1b) projects to 233 units and the Type II unit (Fig. 1f)
projects to 537 units overall. For each unit it is pos-
sible to illustrate the orientation of its connections in
the 2D lattice by plotting in polar coordinates the de-
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viation from a perfect isotropic distribution. In case of
an isotropic distribution the orientations would be il-
lustrated by a circular line around the center. If such
line is not circular it shows that some orientations have
been selected preferentially by chance, as it may occur
in a random selection procedure. The orientations of
the projections of the two example units are illustrated
in Fig. 1c and g. It appears that at the single unit level
a large degree of anisotropy exists in the connection
topology.

Fig. 1dshows the cumulative distribution of all con-
nections established by Type I units projecting to either
type. The modes of the histograms show that on aver-
age one unit of Type I is projecting to 50 units of Type
II and to 190 units of Type I.Fig. 1h illustrates the
cumulative distribution of all connections established
by Type II units and shows that on average one unit of
Type II is projecting to 115 units of Type II and to 460
units of Type I.

2.2. Neuromimetic model

All units of the network are simulated by leaky
integrate-and-fire neuromimes. At each time step, the
value of the membrane potential of theith unit,Vi(t),
is calculated such that

Vi(t + 1) = Vrest[q] + Bi(t) + (1 − Si(t))
× ((Vi(t) − Vrest[q] )kmem[q] ) +

∑
wji(t)
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for any�t < trefract[q] . For a refractory period equal to
1 time unit, the stateSi(t) is a binary variable. In this
simulation we assume that the refractory period is the
same for all units of either type. It is assumed that a unit
can generate a spike only forSi(t) = 1. The parameter
values used for the simulations are listed inTable 1.

2.3. Synaptic connections

The post-synaptic potentialwji is a function of the
state of the pre-synaptic unitSj, of the “type” of the sy-
napseP[qj,qi] , and of the activation level of the synapse
Aji. This is expressed by the following equation

wji(t + 1) = Sj(t)Aji(t)P[qj,qi] .

Notice that the “type” of the synapse is a parameter
that depends on the types of units in the network. In
the current study we assume thatP[1,1], i.e. (Type I→
Type I), andP[1,2] connections, i.e. (Type I→ Type II),
are of the same kind. The same assumption was made
for P[2,1] andP[2,2] connections.

In order to maintain a balanced level of depolar-
ization (excitatory) and hyperpolarization (inhibitory)
the Type I unit was considered as excitatory and Type
II as inhibitory. We setP[1,1] = P[1,2] = 0.84 mV and
P[2,1] = P[2,2] = −1.6 mV.

2.4. Synaptic modification rule
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hereVrest[q] corresponds to the value of the rest
otential for the units of class type [q], Bi(t) is the
ackground activity arriving to theith unit, Si(t) is

he state of the unit as expressed below,kmem[q] =
xp(−1/τmem[q] ) is the constant associated to the c
ent of leakage for the units of class type [q], wji(t) are
he post-synaptic potentials of thejth units projecting
o theith unit.

The state of a unitSi(t) is a function of the mem
rane potentialVi(t) and a threshold potentialθ[q]i , such

hatSi(t) = H(Vi(t) − θ[q]i ). H is the Heaviside func
ion,H(x) = 0 : x < 0,H(x) = 1 : x ≥ 0. In addition
he state of the unit depends on the refractory pe
refract[q] , such that

i(t +�t) = (trefract[q] −�t)
trefract[q]

Si(t)
It is assumed a priori that modifiable synapses
haracterized by activation levels [A] with N attrac-
or states [A1] < [A2] < · · · < [AN ]. Activation lev-
ls of type [1,1] synapses areinteger-valued lev
lsAji(t), with Aji(t) ∈ {[A1] = 0, [A2] = 1, [A3] =
, [A4] = 4}. Index j is referred to as the pre-synap
nit and indexi as the post-synaptic unit. We assu

hat post-synaptic potentials generated by synaps
ype [1,1] correspond to synaptic currents mediate
MDA glutamatergic receptors. These discrete le
ould be interpreted as a combination of two fact
he number of synapticboutonsbetween the pre- an
ost-synaptic units and the changes in synaptic
uctance as a result of Ca2+ influx through the NMDA
eceptors. In the current study we attributed a fi
ctivation level (that means no synaptic modificat
ji(t) = 1, toexc → inh, inh→ exc, andinh→ inh

ynapses.
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A real-valued variableLji(t) is used to imple-
ment the spike-timing dependent plasticity rule for
Aji(t), with integration of the timing of the pre-
and post-synaptic activities. The variablesLji(t) are
user-defined boundaries of attractionL0 < L1 < L2 <

· · · < LN−1 < LN satisfyingLk−1 < [Ak] < Lk for
k = 1, . . . , N. This means that wheneverLji > Lk the
activation variableAji jumps from state [Ak] to [Ak+1].
Similarly, ifLji < Lk the activation variableAji jumps
from state [Ak+1] to [Ak]. Moreover, after a jump of
activation level [A] occurred at timet the real-valued
variableLij is reset toLij(t + 1) = Lk + Lk+1/2.

Spike-timing dependent plasticity (STDP) defines
how the value ofLji at time t is changed by the ar-
rival of pre-synaptic spikes, by the generation of post-
synaptic spikes and by the correlation existing between
these events. On the generation of a post-synaptic spike
(i.e., whenSi = 1), the valueLji receives anincrement
which is a decreasing function of the elapsed time from
the previous pre-synaptic spike at that synapse. Simi-
larly, when a spike arrives at the synapse, the variable
Lji receives adecrementwhich is likewise a decreasing
function of the elapsed time from the previous post-
synaptic spike (i.e., whenSj = 1). This rule is summa-
rized by the following equation:Lji(t + 1) = Lji(t) +
(Si(t)Mj(t)) − (Sj(t)Mi(t)), whereSi(t), Sj(t) are the
state variables of theith andjth units andMi(t),Mj(t)
are interspike decay functions.Mi(t) may be viewed as
a “memory” of the latest interspike interval,

M

F d or d f
t variab tion
l ptic str sion with
a level, [A1] = of a
s ession nt
τ

whereτsyn[qi] is the synaptic plasticity time constant
characteristic of each type of unit andMmax[qi] was set
Mmax[qi] = 2 for all units of either type in this study. In
the case that neither the pre- nor the post-synaptic unit
is firing a spike, the real-valued variable will decay
with a time constantkact[qj,qi] = exp (−1/τact[qj,qi] )
characteristic for each type of synapse, such that the
final equation is the following:

Lji(t + 1) = Lji(t)kact[qj,qi]

+ (Si(t)Mj(t)) − (Sj(t)Mi(t)).

In the present study the differences between the
user defined boundariesLk were all equal, such that
�Lk = Lk − Lk−1 = 20 for any attractor state [Ak].
At the begin of the simulation all modifiable synapses
were set to activation level [A3] = 2.Fig. 2aillustrates
a case when the synaptic link receives a potentiation
determined by the STPD rule described above. The
activation variable jumps from [A3] to [A4] and sta-
bilizes at highest activation level.Fig. 2billustrates a
case when the synapse is continuously depressed such
that the activation variable jumps from [A3] to [A2],
and then from [A2] to [A1] faster than its spontaneous
decay, determined by time constantkact[qj,qi] . Fig. 2c
illustrates a case when the synapse is neither depressed
nor potentiated and the activation level spontaneously
decay down to the minimal level.

2.5. Synaptic pruning

the
p fined
i(t + 1) = Si(t)Mmax[qi]

+ (1 − Si(t))(Mi(t) exp(−t/τsyn[qi] ))

ig. 2. Pruning dynamics. Thereal-valued variableLji is increase
heLk user-defined boundaries a jump occurs in theinteger-valued
evel [A3]. (a) Example of potentiation with an increase in syna

fast decrease in synaptic activation level down to its minimal
ynaptic link which neither affected by potentiation nor by depr

act.
ecreased according to the STDP rule. If the valueLji reaches one o
le[Ak ]. At the begin all (e → e) synapses have been set at activa
ength that is stabilized on the long term. (b) Example of depres

0 which provokes the elimination of the synapse. (c) Example
, but its efficacy decays down to [A1] = 0 according to the time consta

No generation of new projections is allowed in
resent study, although specific rules could be de
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to this purpose. Synaptic pruning occurs when the ac-
tivation level of a synapse reaches a value of zero. This
means that synaptic pruning may occur only for synap-
tic connections of type [1,1], which are also the most
abundant, when the activation levelAji decreases to its
minimal value, i.e. [A1] = 0. In this case the synapse
[i, j] is eliminated from the network connectivity.

2.6. Background activity

The background activityBi(t) is used to simulate
the input of afferents to theith unit that are not ex-
plicitly simulated within the network. Let us assume
that each type of unit receivesnext[qi] external affer-
ents. In the present study we simplify by setting that all
units receive the same number of external projections
and that all of them are excitatory. Namely, we assume
ni ≡ n ≡ 50 and that the post-synaptic potential gener-
ated by these external afferents is fixed to a value equal
toP[1,1]. In the current case (seeTable 1) each external
afferent generates an excitatory post-synaptic potential
equal to 0.84 mV.

We assume that the external afferents are correlated
among them. This means that each time a unit is re-
ceiving a correlated input from 50 external afferents its
membrane potential is depolarized to an extent that will
generate a spike. Such external input is distributed ac-
cording to a Poisson process which is independent for
each unit and with mean rateλi. The rate of external
background activity is a critical parameter. We found
t nt a
r to
s ave
s

2
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i
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Table 2
The scaled parameter values for each network sizeN

N Size φ∗
[1] (%) P∗

[1,1] (mV)

1 10× 10 9.28 2.36
2 20× 20 5.84 1.64
3 30× 30 4.46 1.35
4 40× 40 3.68 1.19
5 50× 50 3.17 1.08
6 60× 60 2.81 1.01
7 70× 70 2.53 0.95
8 80× 80 2.32 0.90
9 90× 90 2.14 0.87

10 100× 100 2.00 0.84

See text for details.

number of excitatory connections at the beginning of
the simulations for smaller networks. The level of
post-synaptic depolarization for excitatory–excitatory
synapses was scaled asP∗

[1,1] = (1 + f − 1/2)P[1,1],
so that the strength of these connections was larger for
smaller networks.Table 2lists the scaled values ofφ∗

[1]
andP∗

[1,1] we used. Note that the values forN = 10
correspond to those listed inTable 1.

2.8. Simulation tools

The simulator was a custom developed, Open
Source, C program that relies on the GNU Scientific Li-
brary (GSL) for random number generation and quasi-
random Sobol distribution implementations. A MySQL
database back end stored all the configuration details
and logs for later reference. This information was ex-
tracted and formatted by a set of PHP Web scripts to
monitor the status of the simulations and create new
ones. With our current implementation at the Univer-
sity of Lausanne, a 10,000 units network simulation for
a duration of 1× 106 time steps lasted approximatively
8 h, depending on the network global activity.

3. Results

All synapses of type [1,1], i.e. (exc → exc) were
initialized withAij(t = 0) = [A2]. In presence of back-
g cter-
i r a
l d
a tion
l

hat with all previous parameters being kept consta
ate of background activityλi < 8 spikes/s is unable
ustain any activity at all. In the present study we h
et the Poisson input to a rateλi = 10 spikes/s.

.7. Network size

We investigated the pruning dynamics with n
orks of different sizes. The smallest network was
ned by 10× 10 units and the largest network stu
ed here was 100× 100 units, i.e. (10×N)2, with

∈ {1, . . . ,10}. To compensate for the changes
he balance between excitation and inhibition indu
y the change of size, we introduced the scaling

or f = 3
√

104/(10×N)2, whereN is the size as de
cribed before. The uniform probability for an exc
ory unit to project to any other unit of the network w
caled according toφ∗

[1] = fφ[1] , leading to a large
round activity only, most synapses were chara
zed by a decrement of the activation level. Afte
ong time,t = tsteady, the network activity is stabilize
nd STDP does not modify any more the activa

evel of the synapses. At timet = tsteadymost modifi-
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Fig. 3. Pruning dynamics averaged overn = 10 simulations for each
network size. With the proposed size compensation factor, the prun-
ing dynamics are comparable for network sizesN ∈ {4, . . . ,10}.
Simulations forN = 1 and 2 saturated, suggesting that the compen-
sation factor was too large for those two specific sizes.

able synapses were eliminated and almost all remain-
ing active synapses were characterized by the highest
possible activation level, i.e. [A4]. We observed that
t = tsteadycould be as long ast = 1 × 106 in several
simulation runs.

3.1. Network size

It is interesting to notice that the final ratio of active
synapses (Rmax[A] ) represented only few percents of
the initial number of synapses (Fig. 3). In addition, it
is important to notice that those connections that reach
the maximal activation level do not necessarily remain
active untilt = tsteady. Several synapses reached level
[A4] after some delay, then their activation level de-
creased down to [A1] = 0, at variable speed, and the
synapse was eventually eliminated.

It is important that a network be attuned to work
in a range such that background activity is unable to
create spurious attractors by STDP. This means that
background activity alone should not create stable con-
nections that would shape the topology of cell assem-
blies. The size of the network is critical if the goal is to
detect the emergence of chains of interconnected units
embedded in a large network.Fig. 3shows that the ratio
of active synapses with activation level equal to [A4]
could be as high as 50% of all initial synapses. The final
percentage of active units is much less variable and at
tsteadyit is always less than 10% for networks that did
not saturate.

3.2. “Seed” effect

A simulation study that relies on large use of ran-
domly generated numbers may fall into local minima
or spurious attractors simply by chance. It was nec-
essary to assess the effect of the seed of the random
number generator on our simulation. The most critical
effect of the randomization may occur at the very be-
ginning, when the initial network topology is created
according to the density functions of the connections
of the different types of units. The very same simula-
tion, with the parameter set described inTable 1was
repeated 100 times using different random seeds with
the largest network size, i.e. 100× 100 units.

The choice of the seed had a significant impact on
the value ofRmax[A] at timetsteady, as it could vary in
the range [1.30,6.03]%. However, as shown by the dis-
tribution ofRmax[A] (Fig. 4), about 90% of these values
were comprised between 3.0 and 6.0%. Moreover, we
never observed cases with absence of convergence at
delays as large ast = 1 × 106. This indicates that a
“seed effect” exists but this does not cause changes in
the overall dynamics of synaptic pruning.

A bias in the orientation of the connections could oc-
cur by random choices. In order to test this hypothesis
two cases of extreme values ofRmax[A] observed in the
distribution ofFig. 4were selected. The first case corre-
sponds toRmax[A] as low asR1 = 1.97%. The second
case corresponds toRmax[A] as high asR2 = 6.03%.

ain
he

%

Fig. 4. Random seed effect on the number of synapses that rem
after pruning. Aftern = 100 simulations that used different seeds t
distribution ofRmax[A] at timet = tsteady= 1 × 106, with bin = 0.5,
shows that in the majority of the runs synaptic pruning left 3.0–6.0
active synapses at the maximum level [A4].
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For both cases we calculated the deviation from an
isotropic connection, as defined previously forFig. 1c
and g, for all active synapses, i.e. with an activation
level not equal to [A1] = 0. Then we calculated an av-
erage deviation plot that corresponds to the mean of
the orientations computed over all active synapses at
given timest, namely att1 = 1 × 105, t2 = 2 × 105,
andt = tsteady= 1 × 106.

Fig. 5ashows the evolution of the orientation map
in the caseR1, when the network stabilizes with
a low level of active connections. In this example
the initial numbern of connections at timet0 was
n = 1,517,240. At t1 330,920 synapses remained,
at t2 172,503 synapses remained, and eventually the

e conn n isotropic
r mark e
ious ti ive,
ial nu

the source-to-target projections measured in Euclidean distance in th
distances are totally predicted by the modified 2d Gaussian distributio
map corresponding to runR2 of Fig. 4. At tsteady93,346 synapses remaine
initial number of synapses at timet0. (d) Normalized histogram of the len
in the 2D lattice for simulation runR2.

network stabilized with 30,864 excitatory–excitatory
synapses. The orientation map shows that the devia-
tions from an isotropic distribution were equally dis-
tributed in all directions. Another factor that could be
affected by the random choice is the distance from
source-to-target (calculated as an Euclidean distance
over the 2D lattice) of the remaining projections. The
histogram of the distribution of these distances Fig 5b
was normalized with respect to the probability distri-
bution of establishing a connection. In this normalized
histogram a ratio of 1 means that the count is perfectly
determined by the probability distribution. In the case
of R1 we observe that there was a tendency to some
deviation from the original probability function, but
ections. (a) Average orientation map. A circular line indicates a
ed by a cross. This simulation correspond to runR1 of Fig. 4. The averag
mes. The last line correspond totsteady: 30,864 synapses remained act

mber of synapses at timet0. (b) Normalized histogram of the length of
Fig. 5. Random seed effect on the orientation and length of activ
orientation of the projections of a unit ideally located at the cente
deviation from isotropy for all active connections is plotted at var
all with active state [A4], which corresponded to 1.97% of the init
e 2D lattice for simulation runR1. A flat line atratio = 1 indicates that the
n function described in the text (cf.Section 2.1). (c) Average orientation
d active, all with active state [A4], which corresponded to 6.03% of the
gth of the source-to-target projections measured in Euclidean distance
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this variance was the same for any source-to-target dis-
tance. In the caseR2, the number of initial synapses was
n = 1,512,634 and attsteady93,346 active synapses
remained. This analysis shows that the “seed” effect
does not introduce significant biases neither in the ori-
entation, nor in the length of the connections that were
selected by pruning.

4. Discussion

We assumed a number of simplified hypotheses
about the presence of only two types of units, their leaky
integrate-and-fire dynamics, their distribution and the
dynamics of the transfer functions of the synapses that
connect these units. With all these assumptions we ob-
served that the network reached a steady state when
the synaptic weights were either incremented to the
maximum value or decremented to the lowest value.
Our result is in agreement with the bimodal distribution
of synaptic strengths observed with a different STDP-
based model(Chechik et al., 1999; Song et al., 2000;
Song and Abbott, 2001). This effect is interpreted as the
effect of the STDP rule that leads pre-synaptic neurons
to compete for the capacity to drive the post-synaptic
unit to produce an all-or-none output signal, akin to an
action potential.

The choice of a 2D lattice topology allowed us to
study the effect of incrementing the network size from
10× 10 to 100× 100 units. It was interesting to ob-
s d ac-
t f
t ried
o r
e s at
t nd,
w cter-
i ach
a es.
T not
b nter-
c
u ore
e pete
f

ses
a cts
o lari-

ties in the network topology. These singularities could
sustain attractors with unbalanced excitatory/inhibitory
inputs if they were the consequence of content-related
inputs(Hill and Villa, 1997). In presence of only back-
ground noise these attractors would be spurious and
could mask input-related features. We observed that
the reinforcement of few synapses occurred without
geometric distortions in both direction and source-to-
target distance over the 2D lattice. Synaptic pruning
proceeded in an homogeneous and isotropic way across
the network. This result suggests that the implementa-
tion of the current STDP rule is equivalent to random
pruning and does not introduce spurious biases.

The present work is currently extended in two di-
rections that will be reported in future articles. The
first direction consists in studying the effect of dif-
ferent synaptic transfer functions without changing
the other parameters of the simulation. This would
introduce temporally asymmetrical STDP(Bi and
Wang, 2002), where both time window and effi-
cacy changes are different for LTD than for LTP
(Stuart and Hausser, 2001). In addition to the mod-
ifiable synaptic rule it would be interesting to in-
troduce more realistic transfer functions in all types
of synapse, in particular in the inhibitory synapses,
to account for modulation frequencies and pre-
synaptic spike interval distribution(Segundo et al.,
1995a,b).

The second extension of this work is the introduction
of content-related inputs, i.e. spatiotemporal patterns of
d ;
H
o of
t es of
n uli
s oke
a
e

A

s-
s rk is
p olo-
g ity,
u der
g

erve that the final ratio of synapses that remaine
ive (that we labeled hereRmax[A] ) was below 10% o
he number of initially active synapses. This ratio va
nly slightly with changes in network size(MacGrego
t al., 1995)and the effect of different random seed

he initialization was also limited. On the other ha
e observed that the ratio of active synapses chara

zed by the maximum weight could transiently re
proportion as high as 50% of all initial synaps

his could indicate that a very large network may
e necessary for recurrent networks to emerge. I
onnected sizable “modules” up to 50× 50 or 60× 60
nits embedded in larger networks may offer a m
fficient way to recruit active synapses that com

or generating a post-synaptic spike.
A bias in the geometrical orientation of the synap

t the network level might produce important effe
n the global dynamics as it could introduce singu
ischarges associated to selected stimuli(Abeles, 1991
opfield and Brody, 2000; Villa, 2000). Preliminary
bservations carried out with a simplified version

his simulation have demonstrated that these typ
etwork may store the traces of time-varying stim
uch that similar stimuli blurred with noise can ev
n activity pattern close to the original one(Eriksson
t al., 2003; Torres et al., 2003).
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