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Abstract. We studied the emergence of cell assemblies out of locally
connected random networks of integrate-and-fire units distributed on a
2D lattice stimulated with a spatiotemporal pattern in presence of in-
dependent random background noise. Networks were composed of 80%
excitatory and 20% inhibitory units with initially balanced synaptic
weights. Excitatory–excitatory synapses were modified according to a
spike-timing-dependent synaptic plasticity (stdp) rule associated with
synaptic pruning. We show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell as-
semblies characterized by an internal pattern of converging projections
and a feed-forward topology not observed with an equivalent random
stimulation.

1 Introduction

Massive synaptic pruning following over-growth is a general feature of mam-
malian brain maturation [11]. Pruning starts near time of birth and is com-
pleted by time of sexual maturation. Trigger signals able to induce synaptic
pruning could be related to dynamic functions that depend on the timing of
action potentials. Spike-timing-dependent synaptic plasticity (stdp) is a change
in the synaptic strength based on the ordering of pre- and postsynaptic spikes.
This mechanism has been proposed to explain the origin of long-term poten-
tiation (ltp), i.e. a mechanism for reinforcement of synapses repeatedly acti-
vated shortly before the occurrence of a postsynaptic spike [8,2]. stdp has also
been proposed to explain long-term depression (ltd), which corresponds to the
weakening of synapses strength whenever the presynaptic cell is repeatedly ac-
tivated shortly after the occurrence of a postsynaptic spike [7]. The relation

M. De Gregorio et al. (Eds.): BV&AI 2005, LNCS 3704, pp. 59–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



60 J. Iglesias et al.

between synaptic efficacy and synaptic pruning [3,9], suggests that the weak
synapses may be modified and removed through competitive “learning” rules.
Competitive synaptic modification rules maintain the average neuronal input
to a postsynaptic neuron, but provoke selective synaptic pruning in the sense
that converging synapses are competing for control of the timing of postsynaptic
action potentials [12,13].

This article studies the emergence of cell assemblies out of a locally con-
nected random network of integrate-and-fire units distributed on a 2D lattice.
The originality of our study stands on the size of the network, between 8,100
and 12,100 units, the duration of the experiment, 500,000 time units (one time
unit corresponding to the duration of a spike), and the application of an original
bio-inspired stdp modification rule compatible with hardware implementation
[4]. In this study the synaptic modification rule was applied only to the exc–exc
connections. This plasticity rule might produce the strengthening of the connec-
tions among neurons that belong to cell assemblies characterized by recurrent
patterns of firing. Conversely, those connections that are not recurrently acti-
vated might decrease in efficacy and eventually be eliminated. The main goal of
our study is to determine whether or not, and under which conditions, such cell
assemblies may emerge from a large neural network receiving background noise
and content-related input organized in both temporal and spatial dimensions.

2 Model

The complete neural network model is described in details in [5]. Some aspects
that were not discussed in that reference are presented here, along with a sketch
description of the model. Integrate-and-fire units (80% excitatory and 20% in-
hibitory) were laid down on a squared 2D lattice according to a space-filling
quasi-random Sobol distribution. Network sizes of [90 × 90], [100 × 100], and
[110 × 110] were simulated. Sparse connections between the two populations of
units were randomly generated according to a two-dimensional Gaussian density
function such that excitatory projections were dense in a local neighbourhood,
but low probability long-range excitatory projections were allowed [5]. Edge ef-
fects induced by the borders were limited by folding the network as a torus.

All units of the network were simulated by leaky integrate-and-fire neu-
romimes. The state of the unit (spiking/not spiking) was a function of the
membrane potential and a threshold. After spiking, the membrane potential
was reset, and the unit entered an absolute refractory period set to 3 ms for
excitatory units, and 2 ms for inhibitory units. Each unit received a background
excitatory input (corresponding to a depolarization of 60 mV) that followed an
independent and uncorrelated Poisson process of mean λ = 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and postsynaptic units and the
changes in synaptic conductance as a result of Ca2+ influx through the nmda

receptors. In the current study we attributed a fixed activation level (meaning



Stimulus-Driven Unsupervised Synaptic Pruning in Large Neural Networks 61

no synaptic modification) Aji(t) = 1, to exc–inh, inh–exc, and inh–inh synapses
while activation levels were allowed to take one of Aji(t) = {0, 1, 2, 4} for exc–exc
synapses, Aji(t) = 0 meaning that the projection was permanently pruned out
(see [5] for more details).

3 Stimulus Protocol

Each simulation was running for 5 · 105 discrete time steps (1 ms per time step),
corresponding to about 8.5 minutes. After a stabilization period of 1 s with-
out any external input, a stimulus was presented every 2 seconds. Overall this
represented 250 presentations of the stimulus along one simulation run. Three
stimulus durations were used: 50 ms followed by 1,950 ms without any external
input, 100 ms followed by 1,900 ms without any external input, 200 ms followed
by 1,800 ms without any external input. The stimulus was composed of vertical
bars uniformly distributed over the 2D lattice surface, each bar being 1 column
wide. The number of bars composing the stimulus was a function of the simu-
lated network sizes: 9 bars for [90×90] networks, 10 bars for [100×100] networks,
and 11 bars for [110×110] networks, such that the bars were always distant of 10
columns one from another and spanning all over the available surface. At each
time step during stimulus presentation, the bars were simultaneously moved one
column to the right, such that each bar slipped over the entire surface of the
network.

The stimulus was applied only to a fraction of the population formed by
excitatory units; these units are called input units. The number of input units
used for the simulations was a ratio (i.e. 3, 5, 7, or 10%) of the initial number
of excitatory units. For a [100 × 100] network, 10% of input units corresponds
to 800 input units, i.e. 10% of the 80% excitatory units of the 10,000 units.
The stimulus applied on a particular input unit provoked a depolarization on
its membrane with amplitudes equal to 0 (i.e. no stimulation), 30, 40, 50, and
60 mV, depending on the protocol. Notice that the stimulus amplitude was
selected in the beginning and did not vary during the simulations.

The three following presentation protocols were applied: (i) ’No stimulation’ :
this condition corresponds to a stimulation of zero amplitude which is necessary
to check computing artefacts that might be associated to the programming rou-
tines used to “stimulate” the units; (ii) ’Random stimulation’ : at each stimulus
presentation, the input units were randomly chosen, such that the input units
changed at any new stimulus presentation; (iii) ’Fixed stimulation’ : the input
units were selected in the beginning of the simulation run and remained the
same at any new stimulus presentation. The total amount of applied stimulation
is equal in both random and fixed protocols.

To summarize the stimulation procedure, let us consider the following exam-
ple. For each of the input units, randomly selected among the 10% of excitatory
units, of a [100 × 100] network stimulated with a 100 ms stimulus, one stimulus
presentation resulted in a sequence of 10 external inputs equally distributed in
time every 10 ms. At the network level, each stimulus presentation corresponded
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to a spatiotemporal sequence characterized by 10 groups of 80 synchronously
excited units stimulated 10 times during 10 ms.

4 Computer Implementation

The simulator was a custom C program that relies on the gnu Scientific Library
(gsl) for random number generation and quasi-random Sobol distribution im-
plementations. With our current implementation and setup at the University
of Lausanne, a 10,000 units network simulation for a duration of 500 seconds
lasted approximatively 3 hours, depending on the network global activity. We
performed simulations with both fixed and random input stimulations, using
the same model parameters and pseudo-random number generator seed, and
compared the cell assemblies that emerged. Network activity was recorded as
a multivariate time series akin of multisite multiple spike train recordings at a
resolution of 1 ms. The firing pattern of each unit could be characterized by first-
and second-order time domain analyses using the programs and tools accessible
from the OpenAdap.Net1 project.

The complete status of the network was dumped when the simulations were
stopped, providing information on the strength of the connections after the stdp-
driven synaptic plasticity and pruning. A set of custom scripts were used to
extract emerged cell assemblies from the dumped status. The extracted weighted
and oriented graphs were further analyzed by means of a tool built on top of
the Java Universal Network/Graph Framework (jung

2). Some typical graph
measurements were computed, including the number of incoming projections
(kin, in-degree) and outgoing projections (kout, out-degree) for each vertex of
the graph.

5 Results

The pool of excitatory units whose incoming and/or outgoing excitatory pro-
jections were not entirely pruned and that were not directly depolarized by the
external stimulus was identified at time t= 500 seconds (from the beginning of
the simulation). Among the units of this pool a subset of units is selected on the
basis of their connection pattern to– and from the pool itself. The units with
at least three strong incoming (kin ≥ 3) and three strong outgoing projections
(kout ≥ 3) within the pool are dubbed strongly interconnected units (SI -units).

The activity of all the SI -units was affected by the fixed stimulation presen-
tation. Fig. 1 shows the response of two SI -units to an external stimulus lasting
200 ms, during the fixed stimulus presentation. About 22% of the SI -units were
strongly inhibited during the stimulus presentation (e.g. Fig. 1a), despite the fact
that the stimulus was delivered only to excitatory units. This effect is due to
the activity of the local inhibitory units that receive excitatory projections from

1 http://www.openadap.net/
2 http://jung.sourceforge.net/

http://www.openadap.net/
http://jung.sourceforge.net/
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Fig. 1. Response of two strongly interconnected sample units to 50 presentations of the
fixed stimulation between time t = 450 and t = 500 seconds from the simulation start.
Network size: [100 × 100]; background activity: 5 spikes/s; stimulus duration: 200 ms;
stimulus intensity: 60 mV; ratio of input units: 10%; fixed stimulation protocol. (a,
b): peri-event densities (psth) for the last 50 presentations of the stimulus; smoothed
with a Gaussian kernel, bin=5ms. Dashed line corresponds to the mean firing rate;
dotted lines represent the 99% confidence limits assuming a Poissonian distribution.
Time zero corresponds to the stimulus onset; (c, d): corresponding raster plots.

the input units. The peristimulus histogram of the other SI -units showed that
the firing rate strongly increased during the stimulus presentation (e.g. Fig. 1b)
with a “primary-like” response pattern, despite the fact that none of the units
belonging to this pool was directly stimulated.

The effect of the different stimulation protocol was complex. The overall
number of SI -units found in absence of stimulation was similar to the number of
SI -units found with random stimulation (n ≈ 400, 6% of excitatory units not di-
rectly stimulated). In the fixed stimulation protocol, the number of SI -units was
much smaller (about 2%), but depended on the stimulus-induced depolarization
amplitude (Fig. 2). Conversely, in the random stimulation protocol condition,
we did not observe a significant change of the number of SI -units in response to
stimulus intensity.

During the process of pruning only the modifiable connections that kept a
sufficient level of activity driven by the stdp rule could “survive”. Then, the first
step for searching an oriented topology after 500 seconds consisted to detect the
excitatory neighbourhood of the SI -units. This neighbourhood corresponds to
the set of those excitatory units that send a projection to the SI -units, receive
a projection from the SI -units, or both send and receive projections. Thus,
this neighbourhood may also include input units, i.e. the units that are directly
receiving the stimulus. The ratio between the number of input units belonging
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Fig. 2. Example of the location of strongly interconnected units as a function of the
amplitude of the stimulus-induced depolarization. Network size: [100 × 100]; stimulus
duration: 200 ms; input units: 10% of the excitatory units; fixed stimulation protocol.

to the neighbourhood and the number of SI -units defines the index of connected

units (icu). The larger the icu, the larger the influence of the input units on
the SI -units.

The value for the icu was computed for different network dimensions, stim-
ulus durations and ratio of input units during the fixed stimulation protocol
(Fig. 3). With a ratio of input units equal to 3%, we observed that the value
of icu was almost zero and independent of the other parameters, because the
amount of stimulus delivered to the network was not sufficiently large to let
appear a noticeable stimulus-driven pruning. Such pruning appeared with 5% of
input units and became clearly visible with 7 and 10% of input units. It is worth
to note that a stimulus lasting 200 ms provoked an effect similar to a stimulus
lasting 50 ms. The “network size” effect is not so interesting by itself, as it is
consistent with the fact that the smaller the network, the larger is the impact of
a certain ratio of the input units. Besides, the application of a parameter scal-
ing factor introduced in [5] almost suppressed the size effect (compare Fig. 3a
and b).

The evolution of kin and kout for the SI -units and their neighbourhood was
studied as a function of the simulation duration for a [100 × 100] network. The
state of the network was analysed at t = 50, t = 200 and t = 500 seconds
(Fig. 4). In the beginning of a simulation, an average excitatory unit receives and
sends projections to about 190 other excitatory units, i.e. kin = kout ≈ 190 (see
Fig. 4a). The variability comes from the projection two-dimensional Gaussian
density function (see Model description). As no new connections are established
during the simulation, kin and kout can only decrease under the pressure of the
pruning process. Some units tend to loose their incoming connections first, others
tend to loose their outgoing connections first. The existence of other processes
combining different speeds for the loss of input and output connections results
in the smear of points visible in Fig. 4b-d.

We observed that as soon as t = 50 seconds, corresponding to 25 stimulus
presentations with the fixed stimulation protocol (Fig. 4d), the evolution of the
SI -neighbour units kin and kout was different from the other two protocols.
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Fig. 3. The index of connected units (icu), i.e. the ratio between the number of input
units and the number of SI -units, as a function of the ratio of input units, stimulus
duration, and network dimensions. Labels of stimulus duration: ◦: 50 ms; ×: 100 ms;
•: 200 ms. (a): simulations performed with unscaled parameter values for all network
sizes; (b): like (a) except for the size-specific scaled variables defined in [5]. Stimulus
intensity: 60 mV; fixed stimulation protocol.

Plots for t = 200 and t = 500 seconds show that most units have kout ≪
kin, which indicates that the pruning modified the topology of the connections
and favored the emergence of a converging pattern. The comparison of these
degrees between t = 200 and t = 500 s (Fig. 4e-g vs. Fig. 4h-j) shows that
the tendency to loose outward projections continued during the last part of
the simulation. In particular, notice that a large part of the neighbourhood
population lost all its input connections (kin = 0); these units ’survived’ only
because the background noise maintained some of their outward connections
timely tuned with the discharges of their targets.

Figure 4 shows that the distribution patterns, for the random stimulation

protocol (Fig. 4c,f,i) and in absence of stimulation (Fig. 4b,e,h) are very similar.
A random stimulus could not drive any significant effect, which was somehow
expected, but it was necessary as a control experiment to detect any bias intro-
duced in the simulation program. In the fixed stimulation protocol (Fig. 4g,j),
we observed n = 415 units with 30 ≤ kin ≤ 130 at t = 200 s that are main-
tained at t = 500 s. There are only 26 units with these properties in the other
two conditions. This population is composed of 407 input units belonging to
the neighbourhood. These input units maintained a large kin, because of the
synchronization of their activity during the stimuli presentations. The vast ma-
jority of the input units ( > 85%) were presynaptic with respect to the SI -units,
thus confirming that the topology organized towards a feed-forward converging
pattern of connections.

In the fixed stimulation protocol, the number of incoming and outgoing pro-
jections of the SI -units was kin ≈ 180 and 3 ≤ kout ≤ 20. It is important to
notice that the distribution of the kin of the SI -units did not change in time.
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Fig. 4. Evolution of the out-degrees (kout) vs. in-degrees (kin): (•) SI -units; (·) SI -
neighbour units. (b, e, h): in absence of any input (362 SI -units, 6, 954 neighbours);
(c, f, i): random stimulation protocol (425 SI -units, 6, 996 neighbours); (a, d, g, j):
fixed stimulation protocol (123 SI -units, 6, 762 neighbours). (a): initial situation at
t = 0 is identical for all three protocols; (b, c, d): at t = 50 seconds; (e, f, g): at
t = 200 seconds; (h, i, j): at t = 500 seconds; Note the scale of vertical axis kout is 200
in panels (a-d), and 40 for panels (e-j). Network size: [100 × 100]; stimulus duration:
100 ms; input units ratio: 10%.
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In fact, the SI -units were characterized by an input pattern very close to that
they had since the very beginning of the simulation. Different random seeds gen-
erated different populations of SI -units but the number of these units did not
vary much as a function of the random seed.

6 Discussion

The main result has been to show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell assemblies
of excitatory units when associated to stdp-driven pruning. The vast majority
of the connections that are modifiable by the spike-timing dependent plasticity
rule were eliminated during the first thousands time steps of the simulation run
[5]. Among the remaining active synapses, almost all were characterized by the
highest possible activation level, in accordance with previous results [12].

We observed that the unsupervised pruning mechanisms tended to organize
a feed-forward cell assembly of strongly interconnected units on top of the input
units selected by the pruning process. Inhibitory responses observed in the pool
of the SI -units are due to a balanced network reaction to the overall increased
firing rate by increasing the activity within the pool of inhibitory units. The con-
nectivity pattern of SI -units, initially set at random, appeared to match some
requirements for maintaining almost all the input connections. The interpreta-
tion is that the cell assembly formed by the SI -units was initially determined by
chance and when the pruning process started to select the active connections,
these were maintained because of their connectivity pattern, thus letting emerge
a particular circuit that was embedded in the network at time t = 0. However,
the emergence of the diverging projections was much more difficult to observe
than the convergence.

The self-organization of spiking neurons into cell assemblies was recently de-
scribed in a study featuring large simulated networks connected by stdp-driven
projections [6]. They studied the spatiotemporal structure of emerging firing
patterns, finding that if axonal conduction delays and stdp were incorporated
in the model, neurons in the network spontaneously self-organized into neu-
ronal groups, even in absence of correlated input. The study [6] emphasizes the
importance of axonal conduction delays that we did not initially consider in
our model.

The choice of our neuromimetic model was justified by its compatibility
with a novel hardware architecture [14]. Instead of leaky integrate-and-fire neu-
romimes, the use of biophysical models of neuromimes based on the Hodgkin-
Huxley framework with multistate neurons and the associated multidimensional
synapses [10] could bring better insight into the biological rationale of the emer-
gence of cell assemblies by synaptic pruning.
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