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Abstract. We simulated a large scale spiking neural network charac-
terized by an initial developmental phase featuring cell death driven by
an excessive firing rate, followed by the onset of spike-timing-dependent
synaptic plasticity (STDP), driven by spatiotemporal patterns of stim-
ulation. The network activity stabilized such that recurrent preferred
firing sequences appeared along the STDP phase. The analysis of the
statistical properties of these patterns give hints to the hypothesis that
a neural network may be characterized by a particular state of an un-
derlying dynamical system that produces recurrent firing patterns.

1 Introduction

The adult pattern of neuronal connectivity in the cerebral cortex is determined
by the expression of genetic information, developmental differentiation and by
epigenetic processes associated to plasticity and learning. During the early stages
of development, excessive branches and synapses are initially formed and dis-
tributed somewhat diffusely (Innocenti, 1995). This over-growth phase is gener-
ally followed by massive synaptic pruning (Rakic et al., 1986) of only a selected
subset of the connections initially established by a neuron. Trigger signals able to
induce selective synaptic pruning could be associated to patterns of activity that
depend on the timing of action potentials (Catalano and Shatz, 1998). Spike tim-
ing dependent synaptic plasticity (STDP) is a change in the synaptic strength
based on the ordering of pre- and post-synaptic spikes. It has been proposed as a
mechanism to explain the reinforcement of synapses repeatedly activated shortly
before the occurrence of a post-synaptic spike (Bell et al., 1997). An equivalent
mechanism is keen to explain the weakening of synapses strength whenever the
pre-synaptic cell is repeatedly activated shortly after the occurrence of a post-
synaptic spike (Karmarkar and Buonomano, 2002).

The study of the relation between synaptic efficacy and synaptic pruning
suggests that the weak synapses may be modified and removed through com-
petitive “learning” rules (Chechik et al., 1999). Despite the plasticity of these
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phenomena it is rationale to suppose that whenever the same information is
presented in the network the same pattern of activity is evoked in a circuit
of functionally interconnected neurons, referred to as “cell assembly”. Cell as-
semblies interconnected in this way would be characterized by recurrent, above
chance levels, ordered sequences of precise (in the order of few ms) interspike
intervals referred to as spatiotemporal patterns of discharges or preferred firing
sequences (Abeles, 1991). Such precise firing patterns have been associated with
specific behavioral processes in rats (Villa et al., 1999) and primates (Shmiel
et al., 2006). Precise firing patterns have also been associated to deterministic
nonlinear dynamics (Villa, 2000) and their detection in noisy time series could
be performed by selected algorithms (Tetko and Villa, 1997; Asai et al., 2006).

In the current study we assume that developmental and/or learning processes
are likely to potentiate or weaken certain pathways through the network and let
emerge cell assemblies characterized by recurrent firing patterns. We investigate
whether or not deterministic dynamics can be observed in the activity of a
network by the analysis of the preferred firing sequences. The rationale is that
a certain network, here identified by the simulation run, may be characterized
by a particular state of an underlying dynamical system that produces recurrent
firing patterns.

2 Neural Network Model

The complete neural network model is described in details elsewhere (Iglesias,
Eriksson, Grize, Tomassini and Villa, 2005). A sketch description of the model
with specific model parameters related to the current study follows below.

We assume that at time zero of the simulation the network is characterized
by two types of integrate-and-fire units and by its maximum over growth in
terms of connectivity. The total amount of units is 10,000 (8,000 excitatory
and 2,000 inhibitory) laid down on a 100×100 2D lattice according to a space-
filling quasi-random Sobol distribution. Two sets of 400 excitatory units (i.e.,
800 units overall) were randomly selected among the 8,000 excitatory units of
the network. The units belonging to these sets are the “sensory units” of the
network, meaning that in addition to sending and receiving connections from
the other units of both types they receive an input from the external stimulus.

The model features cell death mechanisms that may be provoked by: (i) an
excessive firing rate and (ii) the loss of all excitatory inputs. An excessive fir-
ing rate is assumed to correspond to the biological effect known as glutamate
neurotoxicity (Choi, 1988). During an initial phase called “early developmental
phase”, at each time step and for each unit a maximum firing rate was arbitrar-
ily determined following a parameter search procedure described in (Iglesias and
Villa, 2006). Whenever the rate of discharges of a unit exceeds the maximum
allowed rate the cell had a probability to die according to a “genetically” deter-
mined probability function. A dead unit is characterized by the absence of any
spiking activity.
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At the end of the early developmental phase, the synaptic plasticity (Iglesias,
Eriksson, Pardo, Tomassini and Villa, 2005) is enabled. It is assumed a priori
that modifiable synapses are characterized by discrete activation levels
(Montgomery and Madison, 2004) that could be interpreted as a combination of
two factors: the number of synaptic boutons between the pre- and post-synaptic
units and the changes in synaptic conductance. In the current study we at-
tributed a fixed activation level (meaning no synaptic modification) Aji(t) = 1,
to (inh, exc) and (inh, inh) synapses while activation levels were allowed to take
one of Aji(t) = {0, 1, 2, 4} for (exc, exc) and (exc, inh), Aji(t) = 0 meaning that
the projection was permanently pruned out. For Aji(t) = 1, the post-synaptic
potentials were set to 0.84 mV and −0.8 mV for excitatory and inhibitory units,
respectively. The projections from and to “dead” units undergo a decay of their
synapses leading eventually to their pruning when Aji(t) = 0. Other projections
may be pruned due to synaptic depression driven by STDP and also leading
to Aji(t) = 0. Thus, some units that survived the early phase can also remain
without any excitatory input. The loss of all excitatory inputs also provokes the
cell death and these units stop firing (even in presence of background activity)
immediately after the pruning of the last excitatory afference from within the
network.

Two sets of 400 “sensory units” are stimulated by patterned activity orga-
nized both in time and space described elsewhere (Iglesias and Villa, 2006). This
stimulus is assumed to correspond to content-related activity generated else-
where in the brain. The overall stimulus duration is set to 100 ms, followed by
a period without stimulation that lasted 1900 ms. Thus, the rate of stimulation
was 0.5 stim/s.

3 Simulations

The values of the set of parameters specified above were kept constant through-
out all this study. Because of a high sensitivity to the initial conditions of the
pattern of connectivity we repeated the very same analysis with 30 different ran-
dom generator seeds. Thus, each different seed generated a different connectivity
(although keeping the same rules), different stimulus patterns and spontaneous
activity patterns. Each simulation run lasted 105 discrete time steps (Tend), with
1 time step corresponding to 1 ms in the model, that means 100, 000 ms as to-
tal duration of a simulation run. The states (spiking/not spiking) of all units
were updated synchronously. After spiking, the membrane potential was reset to
its resting potential, and the unit entered an absolute refractory period lasting
3 and 2 time steps for excitatory and inhibitory units, respectively. Starting at
time zero and throughout all the simulation run each unit received a background
activity following an independent Poisson process of 5 spikes/s on average.

The early developmental phase, characterized by cell death provoked by ex-
cessive firing rate, begins at time t = 0 and lasts until t = Tedp, that was fixed
at 700 ms for this study. The spike timing dependent plasticity is enabled at
t = Tedp +1. At time t = 1001 ms the first stimulation is applied, lasting 100 ms
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until t = 1100 ms. Between t = 1101 ms and t = 3000 ms only the background
activity is getting into the network. At time t = 3001 ms another stimulation is
applied and so forth until the end of the simulation run. Overall this corresponds
to 50 presentations of the stimulus along one simulation run.

The events belonging to the univariate time series corresponding to the spike
train may have two different origins. Spikes may be simply associated to the
Poisson background noise whenever the cell excitability is high and close enough
to the threshold of activation. The other spikes can be produced by the con-
vergence of synchronous activity (i.e., temporal summation of excitatory post-
synaptic potentials) generated within the network. In order to study the time
series of the spikes associated to the network activity those spikes associated to
the background process were discarded from the spike trains and the so-called
“effective spike trains” were extracted (Hill and Villa, 1997). Such effective spike
trains were searched for the occurrence of spatiotemporal firing patterns, also
called preferred firing sequences, by means of the “pattern grouping algorithm”
(PGA) (Tetko and Villa, 2001). For the present study PGA was set to find pat-
terns formed by three (triplets) or four spikes (quadruplets), with a significance
level p = 0.10, provided the entire pattern did not last more than 800 ms and
was repeated with a jitter accuracy of ±5 ms.

All occurrences of all patterns detected by PGA within the same simulation
run were merged together even if they were found in different units. This op-
eration is aimed at detecting a possible underlying dynamical system that is
associated to a specific network, thus encompassing the activity of several units
belonging to the functional cell assembly. Such particular time series is referred
to as “network patterned spike train”, NP-spike train.

4 Results

At time t = Tend = 100, 000 ms the units characterized by more than four active
excitatory input projections that did not belong to the sets of “sensory units”
were selected and their effective spike trains were analyzed. In one out of the
30 simulations, no spatiotemporal firing patterns could be found. In the other
29 simulations, 147 spatiotemporal firing patterns were detected, corresponding
to 5672 spikes distributed into 61 triplets and 86 quadruplets. A single pattern
could repeat between 5 (the minimum rate set in the algorithm) and 185 times.
The vast majority of the patterns were composed by events belonging to the
same neuron. We found only 3 triplets and 2 quadruplets composed by spikes
produced by two different units.

Figure 1 illustrate two examples of patterns detected in the simulation run
S008. The pattern < 23E5, 23E5, 23E5 ; 154± 3.5, 364± 3.0 > was composed
by spikes produced by one unit labeled here #23E5 (Fig. 1a). This notation
means that the pattern starts with a spike of unit #23E5, followed 154±3.5 ms
later by a second spike of the same unit, and followed by a third spike 364±3.0 ms
after the pattern onset. We observed 15 repetitions of this pattern during the
whole simulation run, but their occurrence was limited to the first half of the
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Fig. 1. (a): Spatiotemporal pattern < 23E5, 23E5, 23E5 ; 154 ± 3.5, 364 ± 3.0 >.
Raster plot showing 15 repetitions of the pattern aligned on the pattern start; (b):
Pattern occurrence timing plot of pattern (a) : each vertical tick represents the timing
of the pattern onset; (c): Spatiotemporal pattern < B9B, B9B, B9B, B9B ; 68 ±
2.0, 556 ± 1.0, 655 ± 4.0 > Raster plot showing 12 repetitions of the pattern aligned
on the pattern start; (d): Pattern occurrence timing plot of pattern (c)

simulation, and in particular in the period [15−28] seconds (Fig. 1b). No corre-
lation could be found between the timing of the spatiotemporal pattern and the
stimulation onset. Figure 1c shows the occurrences of another pattern observed
in the same network. This pattern labeled as < B9B, B9B, B9B, B9B ; 68 ±
2.0, 556±1.0, 655±4.0 > corresponds to a quadruplet that occurred only during
the second half of the simulation.

Figure 2 shows the distribution of the onset times of all 147 patterns along
the simulation duration. This histogram shows that patterns could start any
time after the simulation onset. However, the majority of the patterns tended
to appear and repeat above chance levels only during specific periods of the
network life, thus suggesting the possibility of shifts in the temporally organized
dynamics.

We investigated the distribution of the intra-pattern intervals, corresponding
to the interval between the first and second event of the pattern (Figure 3a) and
between the second and third event of the pattern (Figure 3b). In the case of
quadruplets the intervals of the corresponding sub-patterns (the triplets) were
considered for this analysis.

After detecting all patterns the NP-spike trains were constructed for each
simulation run. In 19/30 simulation runs we found at least 4 different patterns,
each of them repeating many times (Table 1). In these cases it appeared in-
teresting to analyze the patterns that overlapped each other. For each pattern,
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Fig. 2. Relative histogram of the onset time of all 147 patterns. Bin size: 2000 ms.

Fig. 3. Normalized distribution of the intervals among the triplets and quadruplets
spikes. (a): intervals between the first and the second spike; (b): intervals between the
second and the third spike. Bin size: 50 ms.

an overlapping factor was calculated to describe the probability for a pattern
occurrence to overlap another occurrence from the same (self-overlap) or a dif-
ferent (cross-overlap) pattern. The number of overlaps oi of each pattern i was
incremented each time the onset spike of the jth pattern appeared between the
first and the last spike of ith pattern. Then, for each kth network (i.e., for each
simulation run), the normalized overlapping factor Ok was calculated as follows:

Ok =

√∑
oi

nk
(1)

where oi is the number of overlaps for each pattern i and nk is the total number
of occurrences for all the patterns found in the kth network. Table 1 shows that
on average the overlapping factor was higher in the networks characterized by
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Table 1. 147 patterns were observed in the activity of NTOT = 30 distinct networks.
Networks are arbitrarily divided into four classes clusterized by the number of different
patterns found in each one. Class 1 : less than 4 patterns; Class 2 : between 4 an 6
patterns; Class 3 : between 7 an 9 patterns; Class 4 : at least 10 patterns. N : number of
networks; Ô: average overlapping factor for each class; R̂: average number of pattern
repetitions.

N �O �R

Class 1 11 0.04 57.5
Class 2 13 0.06 41.0
Class 3 3 0.08 17.2
Class 4 3 0.07 33.8

7 to 9 different patterns. However, this result should not be considered too
strongly because many more simulation runs are needed in order to extract
significant statistical information.

The network S008 belonging to Class 3 was selected for the plot of the con-
secutive interspike intervals. Return maps correspond to the plots of the nth

interspike-interval against the (n − 1)th interspike-interval. Figure 4 shows, for
two different time scales, the return map computed on the simulation NP-spike
train as scatter plots (fig. 4a,b) and trajectories (fig. 4c,d). Notice the appearance
of an ordered structure in the panels with scales [0 − 250] ms (fig. 4b,d).

5 Discussion

We simulated a large scale spiking neural network, with the time resolution of
1 ms, characterized by a brief initial phase of cell death (Iglesias and Villa, 2006).
The addition of this feature greatly improved the stability of the network while
maintaining its ability to produce spatiotemporal firing patterns as shown in this
study. During this phase the units that exceeded a certain threshold of firing had
an increasing probability to die with the passing of time until 700 time units. Af-
ter the stop of the massive cell death, spike timing dependent plasticity (STDP)
and synaptic pruning were made active. Selected sets of units were activated by
regular repetitions of a spatiotemporal pattern of stimulation. During the STDP
phase, the cell death could occur only if a unit became deafferented, i.e. it lost
all its excitatory afferences because of synaptic pruning.

We recorded the spike trains of all excitatory units that were not directly
stimulated and that were surviving at the arbitrary end of the simulation set at
t = 100 seconds. In these spike trains we searched for preferred firing sequences
that occurred beyond random expectation (Tetko and Villa, 2001). We found 147
patterns in 30 different network configurations determined by different random
seeds. It is interesting to notice that the effect of the initialization is important
because only 6/30 networks were characterized by at least 7 detectable firing
patterns. Moreover, we often observed patterns that occurred only during a lim-
ited time of the network life, usually in the order of 30 to 50 seconds. Such
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Fig. 4. Fingerprint of the dynamical activity of network S008 characterized by an
overlapping factor equal to 0.09. (a): Return map computed for intervals between (a)
0 and 800 ms and (b) focusing around 0 and 250 ms; (c,d): Trajectories for the same
data and intervals.

an example is illustrated by onset dynamics of the two patterns of Fig. 1. This
observation might suggest that the network dynamics giving rise to a pattern
occurrence may be suddenly disrupted by the continuous STDP-driven pruning.
However, there is an extended overlap between patterns occurrence as shown by
the overlapping factor described in this study. The process of patterns appear-
ance looks more like a pattern giving the hand to another pattern but keeping
the transition rather smooth.

The results presented here give some hints to the hypothesis that an under-
lying deterministic dynamical system, detected by the observation of an excess
of preferred firing sequences, may appear under the drive of differentiation and
learning processes. The fingerprints of the system observed in the return maps
are suggestive of the presence of attractors and closed loops (Fig. 4). We believe
that the current study opens new perspectives in this investigation but we are
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aware of the necessity of future studies before any firm conclusion on the rela-
tions between preferred firing sequences and deterministic nonlinear dynamical
systems.
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