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Effect of stimulus-driven pruning on the detection of spatiotemporal
patterns of activity in large neural networks
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bstract

Adult patterns of neuronal connectivity develop from a transient embryonic template characterized by exuberant projections to
oth appropriate and inappropriate target regions in a process known as synaptic pruning. Trigger signals able to induce synaptic
runing could be related to dynamic functions that depend on the timing of action potentials. We stimulated locally connected
andom networks of spiking neurons and observed the effect of a spike-timing-dependent synaptic plasticity (stdp)-driven pruning
rocess on the emergence of cell assemblies. The spike trains of the simulated excitatory neurons were recorded. We searched

or spatiotemporal firing patterns as potential markers of the build-up of functionally organized recurrent activity associated with
patially organized connectivity.

2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

There is experimental evidence that the cerebral
ortex develops as a whole rather than regionally, as
ynaptogenesis proceeds concurrently in all cortical
reas and layers. Simultaneous overproduction of a crit-

cal mass of synapses in each cortical area may be
ssential for their parallel emergence through compet-
tive interactions between extrinsic afferent projections.
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Such competition has been observed between the pro-
jections of the two eyes during the formation of visual
centers (Hubel et al., 1977; Rakic, 1981).

Genetic programs are assumed to drive the pri-
mordial pattern of neuronal connectivity through the
actions of a limited set of trophic factors and guidance
cues, initially forming excessive axonal and dendritic
branches and synapses, distributed somewhat diffusely
(Innocenti, 1995). Then, refinement processes act to
correct initial inaccuracies by pruning inappropriate
connections while preserving appropriate ones. The
embryonic nervous system is refined over the course
of development as a result of the twin processes of cell
death and selective axon pruning. It is generally agreed

that changes in cortical function are associated with
corresponding alterations in the density and arrange-
ment of synaptic circuits. The density of synapses
continues to increase during infancy and remains above

ed.
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adult levels. After a relatively short period of stable
synaptic density, a pruning process begins: synapses
are constantly removed, yielding a marked decrease in
synaptic density. This process continues until puberty,
when synaptic density stabilizes at adult levels which
are maintained until old age (Huttenlocher, 1979).
It was observed through widespread brain regions
including cortical areas (Bourgeois and Rakic, 1993;
Huttenlocher et al., 1982) and the projection fibers
between hemispheres (Innocenti, 1995). Pruning may
also play a role in establishing topographic maps, as it
can be seen in the retinotectal system (Nakamura and
O’Leary, 1989). The relation between synaptic efficacy
and synaptic pruning (Chechik et al., 1999; Mimura
et al., 2003) suggests that the weak synapses may be
modified and removed through competitive “learning”
rules. Trigger signals able to induce synaptic pruning
could be related to dynamic functions that depend on
the timing of action potentials.

In this article, we studied the emergence of cell
assemblies out of a locally connected random net-
work of integrate-and-fire units distributed on a 2D
lattice (Iglesias et al., 2005) stimulated in both tempo-
ral and spatial dimensions. The originality of our study
stands on the size of the network, 10,000 U, the dura-
tion of the experiment, 106 time steps (1 time step =
1 ms), and the application of spike-timing-dependent
synaptic plasticity (stdp) rule that is a change in the
synaptic strength based on the ordering of pre- and
post-synaptic spikes (Bell et al., 1997). Among sev-
eral stdp rules (Roberts and Bell, 2002) we selected a
rather simple one compatible with a custom designed
hardware implementation (Eriksson et al., 2003; Torres
et al., 2004). This hardware is the core of electronic
devices, called POEtic, whose architecture include fea-
tures derived from some of the properties present in
living beings, like evolution, development, self-repair,
self-replication and learning (Tyrrell et al., 2003). The
combination of partial and total dynamic reconfigu-
ration, as well as the self-configuration and dynamic
routing capabilities make these devices an ideal can-
didate for the efficient implementation of large-scale
spiking neural network models. In our study the synaptic
modification rule was applied only to the excitatory–
excitatory (exc, exc) connections. stdp is expected to
strengthen the connections among neurons that belong
to cell assemblies characterized by recurrent patterns
of firing. Conversely, those connections that are not

recurrently activated might decrease in efficiency and
eventually be eliminated. The main goal of our study
is to determine whether or not, and under which con-
ditions, such cell assemblies may emerge from a large
ems 89 (2007) 287–293

neural network receiving background noise and content-
related input organized in both temporal and spatial
dimensions.

2. Models and methods

2.1. Simulation protocol

The complete neural network model is described in details
in Iglesias et al. (2005). Some aspects that were not discussed in
that reference are presented here, along with a sketch descrip-
tion of the model. Integrate-and-fire units (80% excitatory
and 20% inhibitory) were laid down on a squared 2D lattice
according to a space-filling quasi-random Sobol distribution.
Networks of size 100 × 100 U were simulated. Sparse con-
nections between the two populations of units were randomly
generated according to a two-dimensional Gaussian density
function such that excitatory projections were dense in a local
neighborhood, but low probability long-range excitatory pro-
jections were allowed. Edge effects induced by the borders
were limited by folding the network as a torus (Iglesias et
al., 2005). All units of the network were simulated by leaky
integrate-and-fire neuromimes. The state of the ith unit Si(t)
was a function of the membrane potential and a threshold, tak-
ing the value Si(t) = 1 when the unit was spiking, and Si(t) = 0
when it was not spiking. After a spike, the membrane potential
was reset, and the unit entered an absolute refractory period set
to 3 ms for excitatory units, and 2 ms for inhibitory units. Each
unit received a background activity that followed an indepen-
dent and uncorrelated Poisson process of mean λ = 5 spikes/s.

Before the simulation started, two distinct sets of 400 exci-
tatory units were randomly selected from the 8000 excitatory
units of the network, labeled sets A and B. Each set was divided
into 10 ordered groups of 40 U, A = {A1, A2, . . . , A10} and
B = {B1, B2, . . . , B10}. At each time step during a stimulus
presentation, the 40 U of one group received a large excitatory
input on their membrane, leading to their synchronous firing.
The 10 groups of a set were stimulated following an ordered
sequence, thus defining a reproducible spatiotemporal stim-
ulus composed by the repetition of sequences lasting 10 ms
each (Fig. 1). Then, one stimulus presentation lasted 100 ms.
The following protocols were used: (Pr1) no stimulus; (Pr2)
10× sequence A; (Pr3) 10× sequence B; (Pr4) 5× sequence A
followed by 5× sequence B; (Pr5) 5× sequence B followed by
5× sequence A; (Pr6) a random, equiprobable mix of protocols
4 and 5.

2.2. Spike-timing-dependent plasticity rule

It is assumed a priori that a modifiable synapse between
pre-synaptic unit j and post-synaptic unit i is characterized

by discrete activation levels Aji(t), according to recent bio-
logical evidence (Montgomery and Madison, 2004). In the
current study we attributed a fixed activation level (meaning no
synaptic modification) Aji(t) = 1, to (exc, inh), (inh, exc), and
(inh, inh) synapses while activation levels were allowed to take
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a triplet as follows: 〈a, b, c; t1 ± �t1, t2 ± �t2〉. This means
that the pattern starts with a spike of unit #a, then t1 ± �t1 ms
later a spike of unit #b and a third spike of unit #c t2 ± �t2 ms
from pattern start.
ig. 1. Example of one AB (Pr4) stimulus presentation lasting 100 ms
nput on their membrane.

ne of Aji(t) = {0, 1, 2, 4} for (exc, exc) synapses, Aji(t) = 0
eaning that the synapse became permanently dead.

A real-valued variable Lji(t) was used to implement the
pike-timing-dependent plasticity rule (STDP) for Aji(t), with
ntegration of the timing of the pre- and post-synaptic activities.
n the generation of a post-synaptic spike (i.e., when Si(t) =
), the value Lji was incremented as a function of the interval
etermined by the previous pre-synaptic spike at that synapse
Fig. 2). Conversely, Lji was decreased as a function of the
iming of the previous post-synaptic spike (i.e., when Sj = 1).
his rule is summarized by the following equation:

ji(t + 1) = Lji(t) + (Si(t)Mj(t)) − (Sj(t)Mi(t))

here Si(t), Sj(t) are the state variables of the ith and j units
nd Mi(t), Mj(t) are interspike decay functions. Mi(t) may be
iewed as a “memory” of the last interspike interval charac-
erized by a plasticity time constant. The variable Lji(t) was
user-defined boundary of attraction L0 < L1 < L2 < · · · <

N−1 < LN satisfying Lk−1 < [Ak] < Lk for k = 1, . . . , N.
his means that whenever Lji > Lk the activation variable Aji

umped from state [Ak] to [Ak+1]. Conversely, Aji jumped from
tate [Ak+1] to [Ak] if Lji < Lk. After a jump Lij was reset to
ij(t + 1) = (Lk + Lk+1)/2 (Iglesias et al., 2005).

.3. Spike train analysis
Spatiotemporal firing patterns (often referred to as “pre-
erred firing sequences”) are defined as sequences of intervals
ith high temporal precision (of the order of few millisec-

ig. 2. Graphical representation of the variables S(t), M(t) and L(t) in
he STDP rule. Bold ticks mark the occurrences of spikes (S(t) = 1)
hat correspond to the times when M(t) is reset.
h time step, dots mark the group of 40 U receiving a large excitatory

onds) between at least three spikes (triplet) that recur at levels
above those expected by chance (Villa, 2000). The pattern
detection algorithm begins with finding all single or multi-
neuron sequences of intervals that repeat two or more times
within a record. Secondly, the “pattern grouping algorithm”
(Tetko and Villa, 2001) computed how many of such sequences
of intervals can be expected by chance, clusterizes into one
group those sequences of intervals with slight difference in
spike timing, and provides confidence limits for this estimation
(Fig. 3). The general notation describes the timing features of
Fig. 3. Outline of the general procedure followed by pattern detection
algorithms: (a) analysis of a set of simultaneously recorded spike trains.
Three cells, labeled A–C, participate to a patterned activity. Three
occurrences of a precise pattern are detected. Each occurrence of the
pattern has been labeled by a specific marker in order to help the reader
to identify the corresponding spikes; (b) estimation of the statistical
significance of the detected pattern; (c) display of pattern occurrences
as a raster plot aligned on the pattern start.
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The initial 200 s of simulation were not recorded because
the synaptic pruning is very active and the network is not in
a steady state. At time 500 s the simulation was stopped and
the topology of the network was analyzed. Then, the simula-
tion continued until t = 1000 s either with stdp-driven pruning
maintained as before continuous pruning – or without synaptic
pruning (i.e., pruning ended after the first 500 s) – interrupted
pruning. This means that we recorded the spike trains in the
interval [200–500 s], then in the intervals [500–1000 s] of either
pruning condition. The interval [450–500 s] is assumed to be
representative of a “mature” level of pruning reached by the net-
work. Notice that in this interval the stimulus was presented 25
times (once every 2000 ms). The stimulus triggered transient
changes in firing rate during the first part of the inter-stimulus
interval, i.e., up to 1000 ms after its onset. Such transient activ-
ity could affect the efficiency of the pattern grouping algorithm
Tetko and Villa (1997). Thus, for the present study, we used
only the recordings during the second part of the inter-stimulus
interval as searchable spike train for the spatiotemporal fir-
ing patterns. The algorithm was set to find patterns of at least
three spikes (triplets), with a minimal significance level of
5%, repeating at least seven times provided the entire pattern
lasted not more than 200 ms and was repeated with a jitter
�ti = ± 3 ms at most.

The autorenewal densities were computed, according to
Abeles (1982), for all units that participated to preferred fir-
ing sequences. Whenever more than 1 U was found in a
preferred firing sequence we computed also all pairwise cross-
correlograms. Such auto- and cross-correlograms are referred
to as ‘regular’ correlograms. We computed the ‘shift predic-
tor’ (Perkel et al., 1967) in order to estimate the effect of
the stimuli on the firing rate modulations, by shifting the tri-
als, triggered on stimulus onset, with respect to each other in
wrap-around fashion. The net effect of cell assembly inter-
actions was obtained by the ‘differential’ correlogram, which
is the difference between regular and shift predictor correlo-
grams.

3. Results

3.1. Stimulus-dependent projections

Each simulation run lasted 106 discrete time steps
(1 ms per time step), corresponding to a duration of about
16 min. After a stabilization period of 1000 ms with-
out any external input, the stimulus (lasting 100 ms, see
Section 2) was presented once every 2000 ms. Along one
simulation run the network received overall 500 stimulus
presentations.

For each distinct initial condition, we searched among
the pool of 8000 excitatory units those that were char-

acterized by stimulus-dependent projections, that means
all units that (a) were not directly stimulated; (b) had no
input or output (exc, exc) connections in absence of stim-
ulus (protocol Pr1); (c) but maintained strong input and
ems 89 (2007) 287–293

output (exc, exc) connections for any stimulation proto-
col; (d) had a mean discharge rate less than 40 spikes/s
to avoid a filtering bias due to spatiotemporal firing pat-
tern analysis (Tetko and Villa, 1997). Each simulation
run was analyzed at time t = 500 s and the units that
complied with the above criteria formed a cell group
labeled stimulus-dependent assembly. This analysis was
carried out for each seed and stimulation protocol combi-
nation. The stimulus-dependent cell assemblies included
4–54 U.

3.2. Spatiotemporal firing patterns

Spatiotemporal firing patterns of complexity 3
(triplets) and 4 (quadruplets) were searched in the inter-
val [450–500 s] in either protocol. An overall amount
of 44 triplets and 82 quadruplets were significantly
detected by the pattern grouping algorithm (Tetko and
Villa, 2001). Most (97/126) of the significant firing
patterns of either complexity 3 or 4 were composed
by repetitions of spikes by 1 U (e.g., we found 22
occurrences of the triplet 〈6, 6, 6; 131 ± 2, 183 ± 3〉
with protocol Pr4). Two cases of quadruplets are pre-
sented in detail to illustrate several characteristics of
interest.

3.2.1. Case 1
The pattern 〈1, 2, 3, 4; 2 ± 0.5, 30 ± 1.5, 62 ±

1.5〉 was composed by spikes generated by four dis-
tinct units during protocol Pr5 (in this protocol the
stimulus sequence B repeated five times followed by
five repetitions of sequence A). This pattern (Fig. 4)
was observed five times in the interval [450–500 s],
and its statistical significance was 1.5 × 10−2 (Tetko
and Villa, 2001). In this example it is interesting to
notice that the delay between the first two events of the
pattern was only 2 ms. This short delay might suggest
that a tendency to synchronous firing between units
#1 and #2 could favor the detection of the pattern. In
fact the correlation between the pair of units (#1, #2)
did not show any peak centered near time zero, i.e., no
signs of significant synchronous firing of these units.
Further analysis of the timings of the spatiotemporal
pattern with respect to the stimulation onset did not
show any time-locked correlation between stimulus and
pattern occurrence. The analysis with respect to pruning
dynamics (Fig. 4d) suggested that the interruption of
pruning maintained somewhat the occurrence of the

pattern up to ca. t = 750. After this time the pattern
appeared at random times and was not significant. In the
case of continuous pruning the pattern tended to appear
at random times much earlier, from t = 600 s onward.
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Fig. 4. Case 1: spatiotemporal firing pattern 〈1, 2, 3, 4; 2 ± 0.5, 30 ± 1.5, 62 ± 1.5〉 formed by spikes recorded from four units: (a) differential
auto-correlograms and (b) differential cross-correlograms of the four units smoothed by Gaussian shaped bin of 5 ms width. The dotted lines
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epresent 99% confidence limits calculated according to Abeles (1982
espectively; (c) raster plot showing 33 repetitions of the pattern in the
iming plot: each vertical tick represents the start event of a pattern oc

.2.2. Case 2
The pattern 〈5, 5, 5, 5; 27 ± 3, 99 ± 3, 127 ± 3〉

as composed by spikes produced by one single unit,
abeled here #5 (Fig. 5d). Between t = 450 and 500 dur-
ng protocol Pr4 (in this protocol 5× sequence A were
ollowed by 5× sequence it B) 15 repetitions of the pat-
ern were observed. The statistical significance of this
attern of activity was 5 × 10−7. No correlation could
e found between the timings of the spatiotemporal pat-
ern and the stimulation onset.

Fig. 5d shows how this pattern is affected by the
runing process. In the interval [200–500 s], the pattern
as detected 62 times. After the pruning was stopped,

t t = 500 s, the pattern appeared 118 times between
= 500 and 1000 and its rate of occurrence remained
table throughout this interval. In contrast, in the contin-
ous pruning condition, the occurrences of the pattern

ended to decrease. In this condition 20 repetitions of
he pattern were observed in the interval [500–650 s],
hich is a significant rate, but only 19 repetitions were
bserved between t = 650 and 1000. The disappear-
verage firing rates were 12.5, 18.6, 15.8, 30.3 spikes/s for units #1–4,
ous pruning condition aligned on pattern start; (d) pattern occurrence
e. Compare with Fig. 5d.

ance of this pattern is necessarily related to the pruning
process, as it is the only difference between the two
conditions. This suggests that after t = 500 s, the mainte-
nance of the pruning process removed those connections
that were somehow mandatory for the occurrence of the
spatiotemporal pattern.

4. Discussion

This paper has presented some hints about the emer-
gence of spatially organized cell assemblies embedded
in a large neuronal network. The analysis of the spatial
locations of the units whose activity participated to the
preferred firing sequences did not reveal any character-
istic distance or radius of the cell assemblies. Our results
are obtained from a large simulated network but its size
is very small compared to realistic brain circuits. We

cannot discard, and in fact we suggest it, that “spatial
clusters” might appear in simulations that involve net-
work sizes one to two orders of magnitude larger than
ours.
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Fig. 5. Case 2: spatiotemporal firing pattern 〈5, 5, 5, 5; 27 ± 3, 99 ±
3, 127 ± 3〉 formed by spikes recorded from one same unit. The
average firing rate was 16.5 spikes/s: (a) differential auto-correlogram
smoothed by Gaussian shaped bin of 5 ms; (b) raster plot showing 180
epetitions of this pattern in the interrupted pruning condition aligned
on pattern start; (c) spike density histogram of the raster b smoothed by

in a cerebellum-like structure depends on temporal order. Nature
Gaussian shaped bin of 5 ms; (d) pattern occurrence timing plot: each
vertical tick represents the start event of a pattern occurrence. Compare
with Fig. 4d.

We had previously observed that the unsupervised
pruning process, associated with short and stable stim-
ulation patterns, tended to organize units in strongly
interconnected feed-forward assemblies (Iglesias et
al., 2005). Synfire chains (Abeles, 1991) are layered
diverging/converging chains of neurons discharging syn-
chronously to sustain the propagation of the information
through a feed-forward neural network. In the simulated
activity presented here we found evidence of a signifi-
cant excess of recurrent spatiotemporal firing patterns,
thus suggesting an association between the emergence
of layered topologies and the appearance of preferred
firing sequences. The finding that such firing patterns
were observed more frequently after the stabilization
of the dynamics of the changes in synaptic strengths

and after the pruning process was stopped suggests that
optimal levels of pruning are necessary to let emerge
those topologies able to sustain the recurrent activity
that generates the preferred firing sequences. The stop or
ems 89 (2007) 287–293

the reduction of pruning at some “mature” phase of the
simulation might open the way to study developmental
transitions somewhat comparable to those represented
by childhood to adolescence and from adolescence to
adulthood. Future simulations could be used to investi-
gate models of metaplasticity (Abraham and Bear, 1996)
and the association between the pruning phase and its
capacity to induce recallable long-term memories.

The self-organization of spiking neurons into neu-
ronal groups was also described in a study featuring large
simulated networks connected through stdp including
axonal conduction delays (Izhikevich et al., 2004). The
main difference with our results is that Izhikevich et al.
(2004) found disjoint small groups of interconnected
neurons that exhibited correlated temporal patterns of
activity not related to the emergence of layered struc-
tures. These differences might be due to the lack of
axonal delays in our model and our implementation of
the stdp rule based on state synapses (Montgomery and
Madison, 2004) rather than by adjusting their efficacy
along a continuum. An alternative view to explain the
recurrence of preferred firing sequences is that the cell
assembly topology does not necessarily correspond to
feed-forward layers, but it could follow a "chaotic graph"
topology. We intend a graph whose dynamic activity is
deterministic in the “mature” state of the network and
falling into dynamical attractors given initial patterns
of activity. This alternative view is supported by the
observation, in this study, of a majority (97/126) of spa-
tiotemporal firing patterns formed by 1 U, i.e., patterns
like 〈a, a, a; t1, t2〉. Additional theoretical arguments in
favor of this interpretation are discussed in Villa (2000).
Future studies of the simulate spike train dynamics will
include calculation of correlation dimension and Lya-
punov exponents. These new results might reveal further
analogies with experimental data that demonstrated low
dimensional chaotic attractors in the rat brain (Celletti et
al., 1999; Celletti and Villa, 1996).
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