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Two main processes concurrently refine the nervous system over the course of development: cell death
and selective synaptic pruning. We simulated large spiking neural networks (100 x 100 neurons “at birth”)
characterized by an early developmental phase with cell death due to excessive firing rate, followed by
the onset of spike timing dependent synaptic plasticity (STDP), driven by spatiotemporal patterns of
stimulation. The cell death affected the inhibitory units more than the excitatory units during the early
developmental phase. The network activity showed the appearance of recurrent spatiotemporal firing
patterns along the STDP phase, thus suggesting the emergence of cell assemblies from the initially
randomly connected networks. Some of these patterns were detected throughout the simulation despite
the activity-driven network modifications while others disappeared.
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1. Introduction

The adult pattern of neuronal connectivity in the
cerebral cortex is determined by the expression of
some genetic information and by epigenetic processes
associated to plasticity and learning. During the
early stages of development, excessive branches and
synapses are initially formed and distributed some-
what diffusely.! This over-growth phase is gener-
ally followed by massive synaptic pruning? partially
associated to genetically programmed cell death and
pathologic or accidental cell death.

Quantitative analyses of synaptogenesis in the
rat,> the Rhesus monkey, and human cortex®
have suggested a transient phase of high density
of synapses during infancy. Over the course of devel-
opment, complex connectivity patterns require the
pruning of only a selected subset of the connections
initially established by a neuron. Trigger signals
able to induce selective synaptic pruning could be
associated to patterns of activity that depend on

267

the timing of action potentials.® Thus, the connectiv-
ity pattern of the cerebral cortex is completed by the
time of sexual maturity as a result of the concurrent
processes of cell death and selective axon pruning.
Spike timing dependent synaptic plasticity
(STDP) is a change in the synaptic strength based
on the ordering of pre- and post-synaptic spikes. It
has been proposed as a mechanism to explain the
origin of long-term potentiation (LTP), i.e. reinforce-
ment of synapses repeatedly activated shortly before
the occurrence of a post-synaptic spike.” STDP has
also been proposed to explain long-term depression
(LTD), the lasting weakening of synapses strength
whenever the pre-synaptic cell is repeatedly acti-
vated shortly after the occurrence of a post-synaptic
spike.® The study of the relation between synaptic
efficacy and synaptic pruning suggests that the weak
synapses may be modified and removed through com-
petitive “learning” rules.’? These mechanisms would
contribute to maintain the average neuronal input
to a post-synaptic neuron,10 but would provoke
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selective synaptic pruning in the sense that converg-
ing synapses are competing for control of the tim-
ing of post-synaptic action potentials.!’ Despite the
plasticity of these phenomena it is rational to sup-
pose that whenever the same information is pre-
sented in the network the same pattern of activity
is evoked in a circuit of functionally interconnected
neurons, referred to as “cell assembly”. Cell assem-
blies interconnected in this way would be charac-
terized by recurrent, above chance levels, ordered
sequences of precise (in the order of few ms) inter-
spike intervals referred to as spatiotemporal patterns
of discharges or preferred firing sequences.'?> Such
precise firing patterns have been associated with spe-
cific behavioral processes in rats'® and primates.'*

In the current study we introduce an “early
developmental phase” characterized by cell death
followed by the enabling of the synaptic modifi-
cation rules applied to excitatory-excitatory (exc,
exc) and excitatory-inhibitory (exc, inh) connections.
We assume that developmental and/or learning pro-
cesses are likely to potentiate or weaken certain
pathways through the network and let emerge cell
assemblies characterized by recurrent firing patterns.
We investigate whether or not, and under which con-
ditions, the dynamics of occurrence of spatiotem-
poral patterns of activity could be associated to
emerging cell assemblies triggered by content-related
stimuli organized in both temporal and spatial
dimensions.

2. Methods

The originality of our study stands on the application
of an original bio-inspired STDP modification rule
compatible with hardware implementation.'® The
complete neural network model is described in details
elsewhere.'8 A description of the model with specific
model parameters related to the current study fol-
lows below.

2.1. Neural network model

We assume that at time zero of the simulation the
network is characterized by two types of integrate-
and-fire units and by its maximum over growth in
terms of connectivity. The total amount of units is
10,000 (8,000 excitatory and 2,000 inhibitory) laid
down on a 100 x 100 2D lattice according to a space-
filling quasi-random Sobol distribution. Two sets of

400 excitatory units (i.e., 800 units overall), labeled
sets A and B, were randomly selected among the
8,000 excitatory units of the network. The units
belonging to sets A and B are the “sensory units”
of the network, meaning that in addition to send-
ing and receiving connections from the other units
of both types they receive an input from the exter-
nal stimulus.

All units of the network are simulated by leaky
integrate-and-fire neuromimes. At each time step,
the value of the membrane potential of the ith unit,
Vi(t), is calculated such that

V;(t + 1) = ‘/rest[q] + Bz(t)
+ (1 - Sl(t))((‘/l(t) - V;est[q])kmem[q])

+ Z wji(t)

where Viest[q] corresponds to the value of the rest-
ing potential for the units of class type [q], Bi(t)
is the background activity arriving to the ¢th unit,
S;i(t) is the state of the unit as expressed below,
Ememl[q] = exp(—1/Tmemlq]) is the constant associ-
ated to the current of leakage for the units of class
type [g], wji(t) are the post-synaptic potentials of
the jth units projecting to the ith unit.

The state of a unit S;(t) is a function of the mem-
brane potential V;(¢) and a threshold potential 6, ,
such that S;(t) = H(Vi(t) — 0q,). H is the Heavi-
side function, H(z) =0: 2 <0, H(z) =1:2 > 0.
It is assumed that a unit can generate a spike only
for S;(t) = 1. In addition, the state of the unit
depends on the refractory period tyeract[q]: after spik-
ing, the membrane potential was reset to its resting
potential, and the unit entered an absolute refrac-
tory period lasting 3 and 2 time steps for excita-
tory and inhibitory units, respectively. The relative
refractory period was discarded from the model due
to the restrictions imposed by the hardware imple-
mentation compatibility.

Sparse connections between the populations of
units were randomly generated according to a 2D
Gaussian density function with dense projections in
a local neighborhood described elsewhere.'® Long-
range excitatory projections were allowed with a
probability of 2%. Notice that edge effects induced
by the borders were limited by folding the network
as a torus.

The post-synaptic potential w;; is a function of
the state of the pre-synaptic unit Sj, of the type of
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the synapse P, and of the activation level of the

ap
synapse Aj; discussed in the next section. This is

expressed by the following equation
wji(t +1) = S;(t) - Aji(t) - Plg; q.-

Notice that the type of the synapse is a parame-
ter that depends on the types of units in the net-
work. In the current study we assume that P y), i.e.
(exc, exc), and Pj; 5) connections, i.e. (exc, inh), are
of the same kind. The same assumption was made
for P q), ie. (inh, exc), and P39, i.e. (inh, inh)
connections.

2.2. Synaptic plasticity

It is assumed a priori that modifiable synapses
are characterized by discrete activation levels'” that
could be interpreted as a combination of two factors:
the number of synaptic boutons between the pre-
and post-synaptic units and the changes in synap-
tic conductance. In the current study we attributed
a fixed activation level (meaning no synaptic mod-
ification) A;;(t) = 1, to (inh, exc) and (inh, inh)
synapses while activation levels were allowed to take
one of Aj(t) = {0,1,2,4} for (exc, exc) and (exc,
inh), Aj;(t) = 0 meaning that the projection was
permanently pruned out. For A;;(t) = 1, the post-
synaptic potentials were set to 0.84 mV and — 0.8 mV
for excitatory and inhibitory units, respectively.

A real-valued variable Lj;(t) is used to imple-
ment the spike-timing dependent plasticity rule for
Aj;i(t), with integration of the timing of the pre-
and post-synaptic activities. The variables Lj;(t) are
user-defined boundaries of attraction Lo < Ly < Lo
< -+ < Ly_1 < Ly satisfying Ly_1 < [Ax] < Ly,
for £ = 1,...,N. This means that whenever Lj; >
Ly, the activation variable Aj; jumps from state [Ay]
to [Agy1]. Similarly, if Lj; < Ly the activation vari-
able Aj jumps from state [Agyi1] to [Ax]. More-
over, after a jump of activation level [A] occurred
at time ¢ the real-valued variable L;; is reset to
Lij(t+1) = etles,

Spike-timing  dependent plasticity (STDP)
defines how the value of Lj; at time ¢ is changed by
the arrival of pre-synaptic spikes, by the generation
of post-synaptic spikes and by the correlation exist-
ing between these events. On the generation of a
post-synaptic spike (i.e., when S; = 1), the value Lj;
receives an increment which is a decreasing function
of the elapsed time from the previous pre-synaptic

spike at that synapse. Similarly, when a spike arrives
at the synapse, the variable Lj; receives a decrement
which is likewise a decreasing function of the elapsed
time from the previous post-synaptic spike (i.e.,
when S; = 1). This rule is summarized by the follow-
ing equation: Lj;(t + 1) = L;;(t) + (Si(t) - M;(t)) —
(S;(t) - M;(t)), where S;(t),S;(t) are the state vari-
ables of the i¢th and jth units and M;(t), M;(t) are
interspike decay functions. M;(t) may be viewed as
a “memory” of the latest interspike interval,

Mi(t + 1) - Si(t)Mmax[qi]

+ (1 - Si(t))(Mi(t)exp<_t/7_syn[qi]))
where Tgyn[g;] is the synaptic plasticity time con-
stant characteristic of each type of unit and M, ax[qi]
was set Mumax[q;] = 2 for all units of either type
in this study. In the case that neither the pre-
nor the post-synaptic unit is firing a spike, the
real-valued variable will decay with a time con-
stant kact[qj,qi] = exp(—1/Tact[q;,q,)) characteristic
for each type of synapse, such that the final equa-
tion is the following:

Lji<t + 1) = Lji(t) ) kact[qj,qi]
+ (Si(t) - M;(t)) — (S;(¢) - Mi(t)).

2.3. Cell death mechanisms

The “death” of units is introduced in the current
model and represents a major difference with our pre-
vious studies.'® A dead unit is characterized by the
absence of any spiking activity. Cell death may be
provoked by two mechanisms: (i) an excessive firing
rate and (ii) the loss of all excitatory inputs.

The glutamate is by far the main excitatory neu-
rotransmitter in the cerebral cortex. An excessive fir-
ing rate is assumed to correspond to the biological
effect known as glutamate neurotoxicity.'® During an
initial phase called “early developmental phase”, at
each time step and for each unit, an average firing
rate FRs0(7) is computed over a running window cor-
responding to 50ms. For excitatory and inhibitory
neurons a maximum firing rate FRM was arbitrar-
ily determined following a parameter search proce-
dure. In this study we used FRM ox. = 245 spikes/s
and FRM,, = 250 spikes/s respectively. If FR5o >
FRM for the corresponding unit type the cell had a
probability to die according to the function

05-t2—-45-1076.¢
44-(2.5-10646-10-3 - 2)°

Pdeath(t) - (1)
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with Pdeath(t = ].OOH’IS) = 4.5 - 1075, Pdeath(t =
700ms) = 2.2 - 1072, and Pyearn(t = 80ms) =
2.9 - 1073, This function optimizes the number of
units surviving the early developmental phase while
maintaining a balanced excitatory/inhibitory ratio.

At the end of the early developmental phase,
the synaptic plasticity is enabled.' The projections
from and to “dead” units undergo a decay of their
synapses leading eventually to their pruning when
Aj;(t) = 0. Other projections may be pruned due to
synaptic depression driven by STDP and also lead-
ing to A;;(t) = 0. Thus, some units that survived the
early phase can also remain without any excitatory
input. The loss of all excitatory inputs provoke the
cell death and these units stop firing (even in pres-
ence of background activity) immediately after the
pruning of the last excitatory afference from within
the network.

2.4. Content-related stimuli

Patterned activity organized both in time and space
getting into the “sensory units” of the network is
assumed to correspond to content-related activity
generated elsewhere in the brain. Each stimulus
lasted 100 ms and was followed by a period with-
out stimulation that lasted 1900 ms. Thus, the rate
of stimulation was 0.5 stim/s.

The spatial organization of the stimulus was
determined by the following rules. The sets A and
B of sensory units were divided into 10 groups of
40 units each, A = {Al,AQ,...,Alo} and B =
{Bi, Ba, ..., Bio}. During the first millisecond of the
AB stimulation all 40 units belonging to the set A;
received a large depolarization that induced a spike if
the unit was not in a refractory period. At the next
millisecond each unit belonging to the set A, was
strongly activated and so forth until the units of set
Ao were activated. The entire sequence of activation

1 ordered sequence of set A

A1 Ay lasted 10ms and was repeated 5 times, fol-
lowed by 5 times the entire sequence By By (Fig. 1).
A stimulus labeled BA was generated in a similar
manner with 5 times the sequence B followed by 5
times the sequence A.

2.5. Spike train analysis

A spike train is composed by the time series of spike
occurrences and is considered as a point process. The
Poisson background noise alone can provoke a unit to
fire whenever the excitability is close to the threshold
of activation. Other spikes can be produced by the
convergence of synchronous activity (i.e., temporal
summation of excitatory post-synaptic potentials)
generated within the network. In order to study the
activity that is produced within the simulated net-
work those spikes associated to the background pro-
cess were recorded separately and discarded from the
spike trains and the so-called “effective spike trains”
are extracted.?’

The effective spike trains were searched for the
occurrence of spatiotemporal firing patterns. The
pattern detection algorithm begins with finding all
single or multineuron sequences of intervals that
repeat two or more times within a record. Sec-
ondly, the algorithm computes how many of such
sequences of intervals can be expected by chance and
provides confidence limits for this estimation. The
“pattern grouping algorithm”?! performs clustering
into one group of sequences of intervals with jitter in
spike timing. Figure 2 illustrates the outline of this
method. For the present study, the pattern group-
ing algorithm was used to find patterns of at least
three spikes (triplets), with a minimal significance
level of 10%, repeating at least 7 times in the inter-
val [1-100] s, provided the entire pattern lasted not
more than 800 ms and was repeated with an accuracy
of £5ms.

1 ordered sequence of set B

A A1 Aq A1 B4 B1o B B1o A4
1 W/ 1 W/ 1 W/ 1 |‘| |! ‘| |.
1" 10 1 " 50 51 60 61 p 100 I 2001
tstimulus time steps [ms] stimulusj tstimulus
onset offset onset

Fig. 1.

Example of one AB stimulus presentation.
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(c) Rasters of spikes aligned on pattern start

Fig. 2. Outline of the general procedure followed by pat-
tern detection algorithms. (a): Analysis of a set of simul-
taneously recorded spike trains. Three cells, labeled A, B,
and C, participate to a patterned activity. Three occur-
rences of two precise patterns are detected. Each occur-
rence of the pattern has been labeled by a specific marker
in order to help the reader to identify the corresponding
spikes. (b): Estimation of the statistical significance of
the detected pattern. Two patterns, n = 2, (A, C,B) and
(C, C, C) were found. Each pattern was formed by three
neurons, ¢ = 3, and was repeated three times, r = 3, in
the analyzed record. The expected number of patterns
of this complexity and repetition number was N = 0.04.
The probability to observe 2 or more patterns when 0.04
patterns are expected is noted as pr{2,0.04}. (c): Dis-
play of pattern occurrences as a raster plot aligned on
the pattern start.

3. Results

Each simulation run lasted 10° discrete time steps
(Tena), with 1 time step corresponding to 1ms in
the model. The states (spiking/not spiking) of all
units were updated synchronously. Starting at time

zero and throughout all the simulation run each unit
received a background activity following an indepen-
dent Poisson process of 5 spikes/s on average.

The early developmental phase, characterized by
cell death provoked by excessive firing rate, begins
at time t = 0 and lasts until ¢ = Teqp. Two
different early developmental phase durations have
been investigated: Toq, = 700 and T.q, = 800.
The spike timing dependent plasticity is enabled at
t = Toqp + 1. At time ¢t = 1001 ms the first stimu-
lation is applied, lasting 100ms until ¢ = 1100 ms.
Between ¢ = 1101 ms and ¢ = 2000 ms only the back-
ground activity is getting into the network. At time
t = 2001 ms another stimulation is applied and so
forth until the end of the simulation run. Overall
this corresponds to 50 presentations of the stimulus
along one simulation run. The stimuli AB and BA
appear in random order.

3.1. Firing rate-induced cell death

Figure 3 shows the evolution of the number of exci-
tatory and inhibitory units during the first simu-
lated second. For the first 800 time steps, units
with mean firing rates exceeding the FRM thresh-
old entered cell death with the probability expressed
by Picatn(t) (Eq. 1). The cell death dynamics was
linearly fit with the probability function suggesting
that the inhibitory units enter the cell death pro-
cess about 70 ms before the excitatory units. At time

= 1000ms, STDP-driven synaptic pruning could
modify the synaptic weights, thus inducing cell death
due to the loss of all excitatory inputs at a longer
time-scale that is not depicted in Fig. 3.

The early developmental phase prevented the
network from entering overactivity due to saturation
by inducing the death of those units that tended to
have an excessive activity since the early steps of the
simulation. These units are known to destabilize the
network and ignite the saturation.

In two different simulations, cell death was
stopped after Toq, = 700ms or Teqp = 800ms time
steps. With Teq, = 700ms, 956 excitatory units
and 302 inhibitory units disappeared by t = Tiqp.
With Teqp = 800ms, more time was allowed for
“neurotoxic” cell death and 1355 excitatory units
and 416 inhibitory units disappeared. Notice that
the excitatory/inhibitory ratio changed from 4/1 at
t = 0 to 4.15/1 and 4.19/1 with T.qp equal to
700 ms and 800 ms, respectively. The mean firing rate
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Fig. 3. Ratio of surviving units as a function of time with respect to initial conditions: 8000 excitatory units (plain
line) and 2000 inhibitory units (dotted line). In this simulation, firing rate-induced cell death was stopped after 800
time steps (Teqp = 800). Thin lines correspond to the fitting against the probability function Pyea¢n(t) with lags: 120 ms
(R? = 0.9797) and 190 ms (R? = 0.9902) for the excitatory and inhibitory units, respectively.

of the excitatory units computed over the last sec-
ond of simulation (i.e. just before Tenq) was 4.62 +
3.41 spikes/s (average & SD) with Teqp, = 700 ms, and
4.95 + 3.96 spikes/s with Teqp, = 800ms. In absence
of early developmental phase, the mean firing rate
computed over the last second of simulation was
4.32 + 2.83 spikes/s. This indicates that less sur-
viving units at T.q, can fire at higher rates.

3.2. Spatiotemporal firing patterns

One same network generated by the specified rules
was simulated 5 times using 5 different random gen-
erator seeds, that produced 5 different spontaneous
activity patterns. At time ¢ = Tepq, the units, char-
acterized by more than four active excitatory input
projections that did not belong to the sets of stimu-
lated units A or B, were selected and their effective
spike trains were analyzed.

Among the 9 detected spatiotemporal firing
patterns in these 5 simulations, three of them involv-
ing a single excitatory unit are detailed in the fol-
lowing paragraphs because they show representative
features. Figures 4, 5 and 6 depict the results of their
analysis.

The pattern (214F, 214F, 214F, 214F; 74 + 4.5,
682 + 2.5, 798 £ 3.0) was composed by spikes pro-
duced by a single unit labeled here #214F (Fig. 4a).
This notation means that the pattern starts with

a spike of unit #214F, followed 74 +4.5ms by a
second spike of the same unit, followed by a third
spike 682 + 2.5ms after the first, and followed by
a fourth spike 798 + 3.0 ms after the first. Between
t = 1000ms and t = Tuuq, 17 repetitions of the
pattern were observed. The statistical significance of
the excess of pattern occurrence computed by the
pattern grouping algorithm?! was P = 3.9 - 1072.
No correlation could be found between the timing
of the spatiotemporal pattern and the stimulation
onset (Fig. 4d). Figure 4e shows the occurrences of
the pattern onset along the simulation time. The pat-
tern occurred 1 time in the interval [1-25] s, 8 times
in [25-50] s, and 8 times in [50-100] s. This might
suggest that the network dynamics giving rise to the
pattern appeared and was slowly disrupted by the
continuous STDP-driven pruning. The distribution
of pattern occurrences was tested against a linear
regression with serial correlation between the resid-
uals by the Durbin-Watson (DW) test???® charac-
terized by a statistic d and the sample size n. The
value of d becomes smaller as the serial correlations
increase. Figure 4f shows that the distribution of
pattern occurrences is not regular. Indeed DW-test
(d = 0.4864, n = 17) indicates successive error terms
are, on average, positively correlated with signifi-
cance P < 1%.

The pattern (16A3, 16A3, 16A3; 274+4.5, 708 +
1.5) was composed by spikes produced by a single
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Fig. 4. Spatiotemporal pattern (214F, 214F, 214F, 214F; 74 £ 4.5, 682 £ 2.5, 798 + 3.0). (a): Raster plot showing the
17 repetitions of the pattern aligned on the pattern start; (b): Autocorrelograms based on the differential time series
recorded during the second preceding each stimuli onset showing no specifically correlated activity besides the absolute
refractory period; (c): Peri-event density histogram lasting for 200 ms before to 800 ms after stimuli onset showing that
the unit #214F activity is inhibited during stimulus presentation represented by the black line lasting 100 ms; (d): Pattern
occurrence relative to stimulus presentation (black line lasting 100 ms) for the two seconds following stimulus onset during
three arbitrary stages of the simulation: early: 1 < ¢t < 50 s; mature: 50 < ¢t < 75 s; late: 75 < t < 100 s; (e): Pattern
occurrence timing plot: each vertical tick represents the timing of the first pattern event; (f): Pattern occurrence regression
plot: each black circle represents the timing of the first pattern event against its ordinal. The line represents the linear
regression. It can be seen that the residuals of the regression, further investigated with the Durbin-Watson test, are serially
correlated and not randomly distributed around the line.

unit labeled here #16A3 (Fig. 5a). The pattern was
observed 41 times between ¢ = 1000 ms and ¢ = Tenq
(P = 4.2-1072). No correlation could be found
between the timing of the spatiotemporal pattern
and the stimulation onset (Fig. 5d). The pattern
occurred 2 times in the interval [1-25] s, 10 times
in [25-50] s, 17 times in [50-75] s, and 12 times in
[75-100] s. This might suggest that the changes in the
network dynamics induced by the continuous STDP-
driven pruning lead to a transient state between [50—
75] s seconds when the appearance of this pattern is
favored. The linear regression on the pattern occur-
rence (Fig. 5f) is significant (8.97 - 10732) and the
Durbin-Watson test on the residuals (d = 0.3884,
n = 41) indicates successive error terms are posi-
tively correlated (P < 1%). Note that the pattern
tends to occur in bursts.

The pattern (BDC, BDC, BDC; 82 + 3.5, 687 +
5.5) was composed by spikes produced by a single

unit labeled here #BDC (Fig. 6a). In the interval
[1-100] s, 56 repetitions of the pattern were observed
(P = 4.5-107°). Likewise the other firing patterns,
no correlation could be found between the timing
of the spatiotemporal pattern and the stimulation
onset (Fig. 6d). The pattern occurred 12 times in the
interval [1-50] s, 22 times in [50-75] s, and 22 times
in [75-100] s. This might suggest that the network
dynamics giving rise to the pattern was maintained
for the last 50 seconds of simulation despite the con-
tinuous STDP-driven pruning. The linear regression
on the pattern occurrence (Fig. 6f) is significant
(9.83 - 1074%) and the Durbin-Watson test on the
residuals (d = 0.1376, n = 56) indicates successive
error terms are positively correlated (P < 1%).
The down-pointing arrow on top of Fig. 6a indi-
cates the timing of a putative fourth event being
added to the triplet, about 300ms before the first
event of pattern (BDC, BDC, BDC; 82 £ 3.5,
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Fig. 5. Spatiotemporal pattern (16A3, 16A3, 16A3; 274 £+ 4.5, 708 £+ 1.5). (a): Raster plot showing the 41 repetitions
of the pattern aligned on the pattern start; (b): Autocorrelograms based on the differential time series recorded during
the second preceding each stimuli onset showing no specifically correlated activity besides the absolute refractory period;
(c): Peri-event density histogram lasting for 200 ms before to 800 ms after stimuli onset showing that the unit #16A3
activity is larger during stimulus presentation represented by the black line lasting 100 ms; (d): Pattern occurrence relative
to stimulus presentation (black line lasting 100 ms) for the two seconds following stimulus onset during three arbitrary
stages of the simulation: early: 1 <t < 50 s; mature: 50 < ¢t < 75 s; late: 75 < t < 100 s; (e): Pattern occurrence timing
plot: each vertical tick represents the timing of the first pattern event; (f): Pattern occurrence regression plot: each black
circle represents the timing of the first pattern event against its ordinal. The line represents the linear regression. It can
be seen that the residuals of the regression, further investigated with the Durbin-Watson test, are serially correlated and

not randomly distributed around the line.

687 + 5.5). We observe that this additional event
seems to “build up” a quadruplet during the sim-
ulation run, starting near ¢ = 60000ms (horizontal
arrow on the raster display of Fig. 6a).

4. Discussion

We simulated a large scale spiking neural network,
with the time resolution of 1ms, characterized by a
brief initial phase of cell death that extended our pre-
vious model.’® The addition of this feature greatly
improved the stability of the network while main-
taining its ability to produce spatiotemporal firing
patterns. During this phase the units that exceeded
a certain threshold of firing had an increasing proba-
bility to die with the passing of time until 700 or 800
time units (depending on the simulation runs.) The
inhibitory units entered the cell death process about
70ms before the excitatory units. This delay is due

to the build up of recurrent excessive excitation that
affects in a different way the excitatory units (each
one receiving, on average, 190 excitatory inputs and
460 inhibitory inputs) and the inhibitory units (each
one receiving, on average, 90 excitatory inputs and
140 inhibitory inputs). The death dynamics of both
populations followed the probability function to die
with only minor deviations. After the stop of the
massive cell death, spike timing dependent plastic-
ity (STDP) and synaptic pruning were made active.
Selected sets of units were activated by regular rep-
etitions of a spatiotemporal pattern of stimulation.
During the STDP phase, the cell death could occur
only if a unit became deafferented, i.e. it lost all its
excitatory afferences because of synaptic pruning.
We recorded the spike trains of all excitatory
units that were not directly stimulated and that
were surviving at the arbitrary end of the simula-
tion set at t = 10°ms. In these spike trains we
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Fig. 6. Spatiotemporal pattern (BDC, BDC, BDC; 82 4 3.5, 687 &+ 5.5). (a): Raster plot showing the 56 repetitions of

the pattern aligned on the pattern start; (b): Autocorrelograms based on the differential time series recorded during the
second preceding each stimuli onset showing a positively correlated activity for short intervals besides from the absolute
refractory period; (c): Peri-event density histogram lasting for 200 ms before to 800 ms after stimuli onset showing that
the unit #BDC activity isn’t affected by stimulus presentation represented by the black line lasting 100 ms; (d): Pattern
occurrence relative to stimulus presentation (black line lasting 100 ms) for the two seconds following stimulus onset during
three arbitrary stages of the simulation: early: 1 < ¢ < 50 s; mature: 50 < t < 75 s; late: 75 < t < 100 s; (e): Pattern
occurrence timing plot: each vertical tick represents the timing of the first pattern event; (f): Pattern occurrence regression
plot: each black circle represents the timing of the first pattern event against its ordinal. The line represents the linear
regression. It can be seen that the residuals of the regression, further investigated with the Durbin-Watson test, are serially
correlated and not randomly distributed around the line.

searched for preferred firing sequences that occurred
beyond random expectation®! and we found evidence
of their appearance. We suggest that the detection
of such preferred firing sequences might be associ-
ated with the emergence of cell assemblies from the
initially locally connected random network.'® This
would be supported by the finding of the modifi-
cations induced by cell death and synaptic pruning
in the subjacent network that lead to the appear-
ance/disappearance of spatiotemporal patterns of
activity. Figure 6a suggests that such modifications
are part of a dynamical process that “builds up” as
time runs and are therefor difficult to nail down.
The self-organization of spiking neurons into
cell assemblies was reported in other studies of
large simulated networks connected by STDP-
driven projections.?* These authors emphasized
the emergence of spontaneously self-organized neu-
ronal groups, even in absence of correlated input,

associated with the spatiotemporal structure of firing
patterns, if axonal conduction delays and STDP were
incorporated in the model. They suggest these self-
organizing groups generate stereotypical patterns of
activity with millisecond precision through a mecha-
nism called “polychronization” .2

Our simulation results offer also the ground
for testing several hypothesis with respect to neu-
roanatomical experimental results. Indeed, there is
an increasing interest in investigating the cortical
circuits and their synaptic connectivity with a sta-
tistical approach related to graph theory. Results
obtained from layer 5 neurons in the visual cortex of
developing rats?® indicate that many aspects of the
connectivity patterns differ from random networks.
In particular, the distribution of synaptic connection
strength in those cortical circuits show an overrepre-
sentation of strong synaptic connections correlated
with the overrepresentation of some connectivity
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patterns. The authors2® suggest that the local corti-
cal network structure could be viewed as a skeleton
of stronger connections in a sea of weaker ones.

The spike timing dependent plasticity rule imple-
mented in our simulation has already been success-
fully implemented and tested in the POEtic tissue.?”
This electronic circuit is a flexible hardware sub-
strate showing the basic features that permit liv-
ing beings to show evolutionary, developmental or
learning capabilities.?® In future work, these features
are intended to be implemented into a novel and
even more flexible hardware architecture called ubid-
ule®. The genomic features of these hardware tissues
offer the possibility to implement programmed cell
death mechanisms in simulations of large spiking
neural networks. It is expected that the computa-
tional power of the dedicated platform will ease the
simulation of larger networks to explore the impact
of their size on the dynamics.
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