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Abstract

A scalable hardware/software hybrid module —called Ubidule— endowed with bio-inspired
ontogenetic and epigenetic features is configured to run a neural networks simulation with developmental
and evolvable capabilities. We simulated the activity of hierarchically organized spiking neural
networks characterized by an initial developmental phase featuring cell death followed by spike timing
dependent synaptic plasticity in presence of background noise. An upstream ‘sensory’ network received
a spatiotemporally organized external input and downstream networks were activated only via the
upstream network. Precise firing sequences, formed by recurrent patterns of spikes intervals above
chance levels, were observed in all recording conditions, thus suggesting the build-up of a connectivity
able to sustain temporal information processing. The activity of a Ubinet —a network of Ubidules— is
analyzed by means of virtual electrodes that recorded neural signals similar to EEG. The analysis of
these signals was compared with a small set of human recordings and revealed common patterns of shift
in quadratic phase coupling. The results suggest some interpretations of changes and plasticity of
functional interactions between cortical areas driven by external stimuli and by learning/cognitive
paradigms.
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Introduction the actions of a limited set of trophic factors and

guidance cues (24, 35). The outcome of this phase is

The embryonic nervous system is initially driven a pattern of neuronal connectivity characterized by a

by genetic programs that control neural stem cell large amount of diffusely distributed branches and
proliferation, differentiation, and migration through synapses. The rapid rate of synaptogenesis begins a
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few weeks after the end of neurogenesis and com-
pletion of neuronal migration. After a relatively short
period of stable synaptic density, a pruning process
begins: synapses are constantly removed, yielding a
marked decrease in synaptic density (25). For the
human brain, the peak level of synaptic density in
childhood is 150 to 200% compared to adult levels,
depending on the brain region (9, 19). This suggests
a gradient-like organization during early cortico-
genesis (13, 39) that is likely to be related to cortical
patterns of gene expressions (51). The refinement of
the nervous system is due to apoptosis —genetically
programmed cell death— and selective axon pruning
(25, 27, 28).

It is rationale to suppose that the final outcome
of complex connectivity patterns is the result of the
pruning of only a selected subset of the connections
initially established by a neuron. Overproduction
of a critical mass of synapses in each cortical area
may be essential for their parallel emergence through
competitive interactions between extrinsic afferent
projections (8) as suggested by competing projections
of the two eyes during the formation of visual centers
(18). Furthermore, background activity and selected
patterns of afferent activity are likely to shape deeply
the emergent circuit wiring (30, 43).

Synapses can change their strength in response
to the activity of both pre-, and post-synaptic cells
following spike timing dependent plasticity (STDP)
rules (40). This property is assumed to be associated
with learning, synapse formation, and pruning. The
strength of the synapses may vary between discrete
mechanistic states (31), rather than by adjusting their
efficacy along a continuum, that allows an efficient
modeling of the mechanism (46). Certain pathways
through the network may be favored by preferred
synaptic interactions between the neural elements as
a consequence of developmental and learning pro-
cesses (6). In cell assemblies interconnected in this
way some ordered and precise —in the order of few
ms— interspike interval relationships, referred to as
“spatio-temporal firing patterns” or “precise firing
sequences”, may recur within spike trains of individual
neurons and across spike trains recorded from different
neurons (1). If functional correlates of spatio-temporal
neural coding exist, one would expect that whenever
the same information is presented, the same temporal
pattern of firing would be observed (47, 48).

At mesoscopic level, the recording of brain
activity by means of electroencephalography (EEG),
electrocorticography (ECoG) and local field potentials
(LFP) collects the signals generated by multiple cell
assemblies. The neurophysiological processes un-
derlying those signals are determined by highly non-
linear dynamic systems (34). The functional interac-
tions between brain areas that are simultaneously

sampled by these signals can be better investigated by
third order polyspectral analysis that retain phase
relationships (7). This analysis is a non-linear method
of signal processing that quantifies the degree of
phase coupling and was applied to EEG by pioneers
as early as the 1970s (11). Phase coupling frequencies
can be interpreted as frequencies of resonance of
standing waves whose wavelength is associated to
the average distance between interacting cell assem-
blies (49, 50).

In the present study we simulated the activity of
interconnected neural networks undergoing neural
developmental phases. The implementation of such
complex models requires high performance of the
simulation that can be achieved thanks to a powerful
hardware platform, its bio-inspired capabilities, its
dynamical topology, and generic flexibility of artificial
neuronal models. We briefly present the layout of a
hybrid platform for the neural system simulator as a
powerful and innovative simulation tool for neural
simulation and modeling. The outcome is the imple-
mentation of each neural network into a Ubidule and
a network of Ubidules as a Ubinet.

At first, a couple of networks are organized such
that selected units assumed to correspond to the output
layer of an upstream network project to the input
layer of a downstream network. The upstream network
is the only one receiving an external input activity and
may be viewed as a “sensory cortical area” receiving
afferences from the ascending sensory pathway. In
this framework the downstream network may cor-
respond to a “secondary cortical area”. The output
spike trains of the networks were scanned to detect
precise firing sequences, whose structure and dy-
namics were analyzed and compared with the results
obtained for the single simulated networks in presence
and in absence of stimuli (20). The emergence of
functional connectivity driven by neural development,
cell and synaptic pruning, and selective external
stimuli was further assessed in a Ubinet by recording
Electrochipograms (EChG) which are analog signals
similar to EEG generated by virtual electrodes located
into each Ubidule.

We analyzed the EChG mainly by higher-order
spectral analyses in order to reveal quadratic phase
coupling using the same techniques applied for real
brain recordings. The experimental setup was aimed
to describe what happened prior to, at the beginning,
towards the end, and after repeating an external input
at fixed frequency. The rationale is that the spike
timing dependent plasticity embedded in the neural
network models would drive the build-up of auto-
associative network links, within each Ubidule, such
to generate an areal activity, detected by EChG, that
would reflect the changes in the corresponding func-
tional connectivity. This experiment is compared to
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a small set of recordings performed in patients suf-
fering of primary insomnia whose EEG recordings
were analyzed during several sleep phases, before
and after a clinical treatment.

Materials and Methods
Large Scale Neural Network Simulations
1. Features of the neural network

In this study we extend to two (and more) inter-
connected networks the framework for artificial neural
network simulation that was previously developed
for implementation of several features of brain
maturation (22, 23). Each network is a 2D lattice of
100 x 100 units —80% of excitatory units and 20% of
inhibitory units— uniformly distributed over the net-
work according to a space-filling quasi-random Sobol
distribution (38). The probability that, within each
network, a unit be connected to another one followed
a Gaussian density function with different parameters
for excitatory and inhibitory units (21). All units
were simulated by leaky integrateand-fire neuro-
mimes. The spike trains of neuromimes were recorded
and searched for precise firing sequences (PFS).

Background activity was used to simulate the
effect of afferences that were not explicitly simulated
within a network. To this end we assumed that all
units received the same number of external inputs and
that all of these were excitatory. Both apoptosis and
synaptic pruning were taken into account in presence
of a background noise (22). Apoptosis was active
only at the begin of each simulation run; in this study
apoptosis was active during the initial 700 time units.
Synaptic plasticity was active from the end of apoptosis
until the end of simulation. It is assumed a priori that
modifiable synapses were characterized by activation
levels with 4 attractor states (21). The activation
level could jump from one state to another according
to the pre- and postsynaptic spike ordering following
a STDP rule. Synaptic pruning occured when the
activation level of a synapse reached a value of zero.
Besides cell death and axonal pruning of dead cells
provoked by apoptosis, the units whose all synaptic
connections were characterized by a zero level of ac-
tivation were definitely eliminated from the network.
In each network two sets of 400 excitatory units (i.e.,
800 units overall) were randomly selected among the
8,000 excitatory units. These units corresponded to
the “input layer” of the network, meaning that in addi-
tion to sending and receiving connections from the
other units of both types (excitatory and inhibitory)
within the network they received an external input.

2. Preferred firing sequences

experiment |
O

control | | [ 1] | I

effective | |

spike train | timre

A B

Fig. 1. The experimental conditions alter the spike timing of the
units with respect to a control condition. An effective
spike train is computed by subtracting the spikes re-
corded in the control simulation (including the back-
ground activity) to the spikes recorded in the experiment
in order to quantify these changes. Three types of
differences can be accounted for (A) deleted episodes
relative to the control condition; (B) inserted episodes
relative to the control condition; and (C) drifted (anti-
cipated or delayed) episodes which result in both a
deleted and an inserted episode in the effective spike
train.

For each network we recorded separately the
spike trains due to the effects of background noise
only. These recordings corresponded to a “control
condition” necessary to evaluate the “effective spike
trains” (Fig. 1) that represent the genuine activity due
to network dynamics (17).

All Preferred Firing Sequences were searched
in the effective spike trains. PFS were defined as
sequences of intervals with high temporal precision
between at least 3 spikes (triplets) of the same or dif-
ferent units that recurred at levels above those ex-
pected by chance by means of the “pattern grouping
algorithm” (PGA) (Fig. 2). PFS can be formed by
spikes generated by one unit only. In this case PFS
are referred to as ‘single-unit patterns’. PFS that in-
clude spikes generated by different units are referred
to as ‘multi-unit patterns’. For the present study PGA
(44) was set to find patterns formed by three (triplets)
or four spikes (quadruplets), with a significance level
p =0.10, provided the entire pattern did not last more
than 800 ms and was repeated with a jitter accuracy
of £5 ms.

3. Recording conditions

The detailed spike train activity was studied in
paired Ubidules configuration. In the upstream net-
work a subset of excitatory units not belonging to the
input layer was selected as “output layer”. The output
layer was formed by all units maintaining at least five
active excitatory input connections from within the
network after a simulation run lasting 100.000 ms
with time resolution of 1 ms. This duration was fixed
arbitrarily because the networks generally stabilized
or died by this time. The amount of units belonging
to the output layer was in the range 100-150, depending
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Fig. 2. Outline of the general procedure followed by pattern
detection algorithms. (a): Analysis of a set of simulta-
neously recorded spike trains. Three cells, labeled A, B,
and C, participate to a patterned activity. Three occur-
rences of a precise pattern are detected. Each occurrence
of the pattern has been labeled by a specific marker in
order to help the reader to identify the corresponding
spikes. (b): Estimation of the statistical significance of
the detected pattern. (c): Display of pattern occurrences
as a raster plot aligned on the pattern start.

on the random number generator initialization. Notice
that the connections between the output layer of the
upstream network and the input layer of the down-
stream network are synaptic connections with the
activation level invariant throughout the simulation
and with synaptic strengths identical to the afferent
sensory projections.

We distinguish four recording conditions (Fig.
3):

‘stim OFF’: The activity of a single network was
recorded in the absence of any external
input and in presence of the background
noise only. The effective spike trains
represented the net effect of internal
network dynamics shaped by sponta-
neous synaptic pruning.

The activity of the upstream network

was recorded in presence of an external

input corresponding to a spatiotemporal

pattern of activity (22).

‘coupled 1’: The activity of the downstream network
was recorded in presence of an external
input fed to the upstream network. The
pattern of connectivity between the two

‘stim ON’:

b Stimulation OFF

a Stimulation ON

Fig. 3. Schematic diagram of the four recording conditions. In
panels (a) and (b) the networks are isolated. In panels (c)
and (d) the networks are coupled. The upstream network
is on the left hand side and the downstream network on
the right hand side.

networks was such that each unit of the
upstream output layer was connected to
only one unit of the downstream input
layer, randomly selected among the
predefined 800 input units.

‘coupled 2’: The activity of the downstream network
was recorded in presence of an external
input fed to the upstream network. The
pattern of connectivity between the two
networks was such that the upstream
output layer was characterized by diver-
gent projections onto the downstream
input layer. Each of the 800 units of the
downstream input layer were receiving
a projection from one unit of the up-
stream output layer.

The Ubinet
1. Hybrid system implementation

The Ubidule is a custom reconfigurable elec-
tronic device allowing an implementation of several
bioinspired mechanisms such as growth, learning,
and neural processing (41). The common Ubidule
platform is an hybrid system with two main charac-
teristics. The first is an XScale-class processor that
manages the software components of the system, such
as communications with other Ubidules, monitoring,
but also phylogenetic processes. This processor is
equipped with an open hardware subsystem which
allows connecting any sort of USB device (sensors,
actuators, Wifi/Bluetooth dongles, mass storage, efc.).
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The processor runs an embedded Linux operating
system which facilitates Ubidule programming and
management while ensuring portability at the same
time. The second characteristic is a full custom re-
configurable electronic device named Ubichip which
can be configured either in native mode (FPGA like)
or in multiprocessor mode.

Both hardware and software platforms are based
upon modular architecture according to the classical
evolutional scheme along three main axis, that are
Phylogenesis, Ontogenesis, and Epigenesis. Phylo-
genesis deals with the evolution of the species.
Evolution is meant to gear species towards a better
adaptation of individuals to their environment by
means of mutation of the basic instruction set (the
genome). Genetic algorithms are inspired from this
very principle of life by selecting the individuals ac-
cording to some fitness function. Ontogenesis de-
scribes the origin and the development of an organism
during its early stages. Biological processes like cell
proliferation, cell differentiation, healing and fault
tolerance are qualified of ontogenetic. Epigenesis
refers to adaptation, learning and plasticity unrelated
to the specific DNA sequence of an organism. Learn-
ing performed by artificial neural networks is a process
limited to an individual lifetime and is qualified of
epigenetic.

The similar modular structure offers interopera-
bility among the hardware and the software parts of
the system and simplifies the usage of bio-inspired
features of the hardware. The neural system simulator
consists of multiple computational modules, each one
corresponding to a neural network, exchanging their
neural activity and/or receiving input data from hard-
ware sensors (camera, photodiode, radars, efc.) and/
or providing output to hardware actuators (motor,
diode array, etc.). The characteristics of the implemen-
tation naturally geared the modeling framework
towards agent oriented programming. An evaluation
of the available platforms of this kind led us to select
JADE (3) for the development and runtime execution
of peer-to-peer applications which are based on the
agent oriented paradigm.

The phylogenetic evolutionary level of the ap-
plication (P-agent) carries the genetic algorithm as-
sociated to the computational neurogenetic modeling
(4). Notice that many neuronal applications without
P-agent may be bound to one application with P-
agent. The P-agent generates the genomes for the ap-
plication set and translates genomes to the appropriate
ontogenetic O-agents for further initialization and
generation of the Eagents. The fitness function, also
associated to the P-agent, collects information about
system behavior and selects the “best” genomes to
produce the next generation of agents replacing the
“dead” ones. In the current implementation no specific

04Process o2Motor

™ 06Process

05Process g

o1Sensory o3Process

Fig. 4. The Ubinet circuit used in all simulations. Solid arrows
depict connections and directions of information flow
between the Ubidules. The dotted arrow describes an
auxiliary technical synchronization connection ensuring
a common Ubinet time flow.

task was required and the fitness function was merely
reduced to the survival of the Ubinet. The survival
was fulfilled if (i) the activity within the networks
modules was maintained despite the cell and synaptic
pruning driven by spike timing dependent plasticity;
(ii) the Ubinet achieved foraging (2) and mating
activities (10). An agent “life-time” is implemented,
mimicking biological principle of natural selection,
preserving the genomic properties associated to the
best fitted “individuals”. The ontogenetic level of the
application (O-agent) is devoted to decoding the
genome (provided by the P-agent), managing genome
mutations, configuring the neural network elements
(cell types with their specific dynamics) and all other
auxiliary setup steps necessary to ensure the integrity
of the software/hardware platform.

2. Electrochipograms

Our circuit topology remained fixed during all
simulations and the Ubidules were characterized by
their role in the network, i.e., sensory, processing, or
motor (Fig. 4). In our network, the o/Sensory Ubidule
has a pure sensory role. Ubidules labeled o3Process,
04Process,o5Process,06Process have a pure informa-
tion processing role and are characterized by having
neither external inputs nor afferences from the motor
Ubidule. They are all reciprocally interconnected
and send efferent projections to o2Motor.

Our design of the bio-inspired artificial neural
networks allowed us to implement realistic virtual
electrodes to record neuro-mimetic signals, called
Electrochipograms (EChG), characterized by dy-
namics and features similar to those recorded in living
brain structures.
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In our implementation the virtual electrode
measures the potentials over a certain ‘area’ of the 2D
lattice neuronal network according to an appropriate
weighted sum (42). The main parameters of the
electode are its position over the neural network and
its sensibility function. The position C = (x, y) is de-
fined by the two dimensional coordinates of the centre
of the electrode on 2D square lattice of the neural
network. The tip of the virtual electrode was located
in the middle of the 2D lattice of each Ubidule neural
network.

The sensibility function depends only on the
distance between a given point of the lattice and the
centre of the electrode field. According to this model,
all neurons located at the same distance from the
center of the electrode field make an equivalent con-
tribution to the final electrode output and thus form an
equi-potential layer L. Let us denote R the sensibility
radius of the electrode corresponding to the total
number of the equipotential layers contributing to the
signal recorded by the electrode. The monopolar
signal recorded by the radial electrode is calculated
such that E,puep(t) = 2wy 0(r) Ly 1y Pi(t), Where
¢(r) is a given sensibility function of the electrode,
L(r) is the set of all neurons belonging to the equi-
potential layer L, which is at distance r from the
electrode centered on C, and ‘¥() is the given potential
function of the i—th neuron. In this study, the sensi-
bility radius was set equal to 9 with a linear decaying
function.

The EChG was recorded with a 6 channels virtual
electrode system with one channel per Ubidule during
350 trials. Each trial had a fixed duration and in-
cluded two intervals: a stimulation interval followed
by an interstimulus interval. The stimulation was
generated by spatio-temporal external stimuli applied
only to the input layer of olSensory lasting 128 (Type
A), 256, and 512 (Type B) time steps. The extensive
use of Fast Fourier Transform in our signal analysis
imposed, for improved efficiency, sampling fre-
quencies which are powers of two. In practice the
time-steps of the simulator were selected for con-
venient time units, i.e., 1024 time steps corresponding
to 1000 ms. The inter-stimulus interval was always
equal to 1000 ms. The background activity to each
neuron was set to 900 spikes/s with a low amplitude
(1 mV) generated by uncorrelated Poisson distributed
inputs. The recording time was divided into four
periods defined following the amount of time the
Ubinet was exposed to the stimulation: (i) pre-learning
beginning at time zero and lasting 27 trials char-
acterized by the absence of any stimulation (i.e., only
the background activity was present during the
stimulation interval); (ii) early-learning lasting 50
trials, between trials #28 and #77; (iii) late-learning
lasting 50 trials, between trials #228 and #277; and

200 . . . . --...01Sensory.
—04Process

Amplitude uV

Amplitude uV

stimulation

0 256 1200
Time Steps

Fig. 5. Evoked potentials averaged over 50 trials obtained from
olSensory (blue solid trace) and from 04Process (green
dotted trace) Ubidules during the early-learning stage.
The stimulus was applied during 256 time steps. The
upper panel displays the raw evoked potentials and the
lower panel shows the signals smoothed by a Blackmann
smoothing window in order to emphasize the low fre-
quency components.

(iv) post-learning lasting 50 trials, between trials
#278 and #327.

The signals recorded during the stimulation
interval were averaged across several trials in order to
compute evoked potentials (e.g., Fig. 5). The signals
recorded during the inter-stimulus interval were used
for bispectrum and bicoherence analyses. Let us
consider the distribution of all phase-coupled fre-
quencies f; observed in single-channel and cross-
channel analyses. Let us consider the frequency band
[1-24] Hz for EChG and LF the relative number of f;
falling into this low frequency range. Let us consider
the frequency band [60-84] Hz and HF the relative
number of f3 falling into this high frequency range. The
index of resonant frequencies IRF is defined in the
range 0—100 as follows: IRF = % x (100 + (M X
100)). This means a value of IRF close to 100
corresponds to a shift of f5 towards higher frequencies
and value of IRF close to 0 corresponds to a shift of f3
towards lower frequencies. IRF values close to 50
indicates the phase-coupling was equally distributed in
low- and high-frequency bands. Another index RFR —
raw frequency ratio— is simply defined by RFR = LE
This means a large value of RFR corresponds to a shift
of phase-coupling towards higher frequencies and a
low value of RFR corresponds to a shift towards lower
frequencies.

Human Recordings

All human Subjects were analyzed following a
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protocol approved by the Ethical Committee of the
Cantonal University Hospitals of Geneva (HCUGE).
The data were anonymized before the analysis and no
investigator was whatsover informed of any personal
data of the Subjects. We have targeted a set of EEG
recordings characterized by a non invasive treatment
based on cognitive behavioural therapy (CBT-I) of
insomnia (12, 32). Insomnia occurs in about a third of
the adult population affecting both genders at all ages
and observed in all countries, cultures, and races.
This means that EEG changes associated to insomnia
must reflect some very general pattern of alteration.
The rationale is that such data set is keen to be similar
to what we could explore along the “learning” pro-
cedure used with the Ubinet.

The subjective and polysomnographic improve-
ment of sleep by CBT-I suggests that non-pharmaco-
logical treatments can induce significant changes in the
EEG and that these changes might be associated to the
dynamics of neural circuits that are involved in the
etiology of insomnia. The hypothesis of a “hyper-
arousal” mechanism either physiologic, psychologic or
cognitive has been suggested (37) and supported, among
other findings, by electrophysiological markers. These
markers include increased high EEG frequencies in the
perisleep onset period, during non rapid eye movement
(NREM) and rapid eye movement (REM) sleep (15,
26), reduction of slow wave sleep (16) and decreased of
power spectra of delta 0.5-3.75 Hz and theta 3.75-6.75
Hz bands (29, 36). It appears that it is rationale to
analyze the EEG from human Subjects and process it in
the same way as the EChG from Ubinet in order to
investigate common patterns of transition and alteration
associated to the underlying network dynamics.

The polysomnography was performed on two
patients and two control Subjects using 7 scalp silver-
silver chloride EEG electrodes (F3-F4, C3-C4, Cz,
01-02) referred to linked mastoid electrodes. Im-
pedance was kept below 5 kQ. In addition, two elec-
trodes were placed above and below the external
canthi for EOG, and two electrodes on the chin for
EMG. The EEG recording was performed with a
commercial device (Brainlab, OSG, Belgium) during
the period 10 PM-8 AM. During wakefulness, at the
beginning of the recording period, EEG epochs of
interest were recorded during the eyes closed (EC)
condition. The sleep onset was defined by the first
disappearance of the alpha rhythm on all derivations
and the appearance of a diffuse theta rhythm visible
for more than 2 sec. The drowsiness period that oc-
curred just before sleep onset is defined post-hoc at
the time of the off-line analysis and corresponds to
the pre-theta (PRE-THETA) recording condition.
Changes in EEG spectral analysis in primary insomnia
is most pro-eminent during the first ultradian sleep
cycle. Then two minutes of EEG without artefacts

a
-100 0 4191 N+698 900
Lag [ms]
I 1l
T .
0 25 50 75 100
Time [s]
c
. Z\ :\ :\ Y *e H . N
-100 0 19364301358 900
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d

0 25 50 75 100
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Fig. 6. Spatiotemporal firing pattern < 148C, 148C, 148C;
191 £0.9,698 + 1.0 > that repeated 11 times in the ab-
sence of apoptosis. Unit #148C spontaneous mean firing
rate: 4.0 spikes/s. Raster plot (a) of the patterns aligned
on the pattern start and raster plot of patterns onset (b):
each vertical tick corresponds to the onset time of each
pattern occurrence; Spatiotemporal firing pattern < 554,
554,554,554; 236 £0.7,301 £ 0.8, 358 0.6 > in the
absence of apoptosis. Unit #554 spontaneous mean
firing rate: 13.1 spikes/s. Raster plot (¢) showing 13
repetitions and raster plot of pattern onset (d).

were collected for EC, PRE-THETA and first sleep
cycle (NREM2, REM). In the human recordings the
index of resonance IRF was calculated with LF [1-
13] Hz and HF [33-48] Hz ranges.

Results
Preferred Firing Sequences

Precise firing sequences (PFS) are simply
referred below as “patterns”. Because of a high sensi-
tivity to the initial conditions we repeated all simula-
tion runs with 30 different random generator seeds.

Appearance and disappearance of patterns was
due to developmental changes shaped by STDP in the
network connectivity underlying the processing of
temporal information. Fig. 6 shows extreme cases of
onset dynamics of single-unit patterns observed in the
absence of apoptosis. In one case a triplet appeared
early in the network maturation and disappeared after
t = 35,000 ms (Fig. 6a,b). The single-unit pattern
<148C, 148C, 148C; 191 £ 0.9, 698 + 1.0> was com-
posed by spikes produced by unit #148C. This notation
means that a precise firing sequence started with a
spike of unit #148C, followed 191 + 0.9 milliseconds
later by a second spike of the same unit, and followed
by a third spike 698 + 1.0 ms after the first. In the
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Table 1. Cumulative statistics of preferred firing sequences detected in the downstream network

stim OFF stim ON coupled 1 coupled 2
Active neurons 5352 4240 4860 3763
Detected Patterns 197 (3.7%) 147 (3.5%) 241 (5%) 168 (5%)
Pattern Occurences 7359 (38.5) 5672 (37.4) 9373 (39.9) 7853 (46.8)
Triplets/Quadruplets 59/138 =04 54/93 =0.6 107/134=0.8 89/99 =0.9
Multi-unit Patterns 6 5 8 12

opposite case another pattern (a quadruplet in this
example) appeared only at a later stage of maturation
after + = 65,000 ms (Fig. 6¢.,d).

Table 1 shows cumulated statistics referred to
the downstream network over all 30 simulation runs.
This Table shows that in absence of an external input
(‘stim OFF’)more units survive at the end of the
simulation run. In case of networks coupling more
patterns were found in proportion to the number of
active cells. Moreover, in coupled networks each
pattern tended to appear more often. It is important to
notice that both ‘stim ON’ and ‘coupled 2’ networks
were characterized by 800 external afferent inputs.
Despite this similarity there is a decrease in about
10% of the amount of surviving cells in the ‘coupled
2’ network by the end of simulation. The ratio of
detected patterns vs. active cells was close to 5% in
the downstream network and < 4% in the upstream
network (Table 1, second line). This difference seems
small overall but it was significant by y*-test (p <
0.05). The PGA algorithm detected all repetitions of
the same pattern in the spike trains. Notice that the
average number of repetitions per pattern increased in
the downstream network (up to 46.8 in ‘coupled 2°).

In all recording conditions we observed more
patterns formed by four spikes (quadruplets) than
patterns formed by three spikes (triplets). However,
the Triplets/Quadruplets ratio tended to values close
to 1 in coupled networks (Table 1). One could expect
that most triplets corresponding to subpatterns of a
significant quadruplet would also be counted among
the significant triplets. This is generally not the case
because of the very stringent tests of significance
carried on triplets that bias the pattern detection in the
sense of underestimating the number of triplets (44).
Most patterns were single-unit patterns but generally
the units that were involved were different from
pattern to pattern. Depending on the recording con-
dition we observed only 1-3 units that produced more
than one single-unit pattern. Multi-unit patterns were
observed in all networks and they were more frequent
in the ‘coupled 2’ downstream networks. The pro-
bability of multi-unit pattern detection is very small
due to the PGA sampling procedure for selection of
the spike trains to be analyzed simultaneously. Then,

the increase in frequency of multi-unit patterns could
not be assessed with reliable confidence.

The analysis of the distribution of the intervals
between the events forming the PFS was further
investigated for the triplets by separating the “first
intervals” (i.e., between the first and second events of
the patterns) and the “second intervals” (i.e., between
the second and third events of the patterns). In case
of quadruplets we considered the triplets correspond-
ing to the subpatterns. First intervals shorter than 100
ms were less frequent in the downstream networks
compared to the first intervals of the upstream net-
works irrespective of the presence of the external
stimulation. Moreover, we found more patterns lasting
between 100 and 400 ms in the downstream networks,
thus suggesting a first order statistics that significantly
deviated from Poisson distribution and an internal
temporal structure that is associated with an increase
in hierarchy of the Ubidule.

Fig. 7 shows the distribution of the onset time of
the first occurrence of each pattern. In all recording
conditions most patterns appeared before ¢ = 30.000
ms and not later than # = 50.000 ms. In the downstream
network (in particular ‘coupled 2’) the patterns tended
to appear later during the simulation. Fig. 8 shows the
distribution of the epochs of all spikes belonging to
all repeated patterns. It is interesting to notice that
after a certain delay the probability to find a spike
belonging to a pattern tended to be almost constant
for all recording conditions. However, such plateau
was reached much later for the most interconnected
downstream network (Fig. 8 ‘coupled 2’), at a time
near t = 35.000 ms.

Quadratic Phase Coupling

The bispectral analysis was performed for all
channels separatedly and the values of phase-coupled
frequencies (i.e., the frequencies of resonance f3)
were determined.

Fig. 9 shows the distribution of f5 in the range
1 to 100 Hz during all recording periods and for the
two types of stimulus used in the Ubinet simulation.
These histograms show a shift towards an increase in
lowfrequencies resonances during the late-learning
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2’ downstream network.

phase, especially when compared with the distribution
during the post-learning, when the input stimulus was
absent. The quantitative assessment of this analysis
presented in Table 2 emphasizes the change in the
value of IRF between early- and late-learning phases.
A decrease from /RF = 60 to values IRF = 14 followed
by an increase to the range 26-29 during the post-

90.000
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~ 200
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© 100
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coupled 2
3009 n=7853
— 200 A
c
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o
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0 4
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. Bin size: 2000 ms. Notice the less steep slope for the ‘coupled

learning phase suggests that the shift towards low
frequencies of phase-coupling was provoked by the
learning protocol and not only due to the maturation
of the network. The analysis of /RF and RFR shows
also that in the postlearning stage the resonant features
remained affected by the functional connectivity that
developed during the trials with external stimulation
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Table 2. Percentage of phase-coupled frequencies in each frequency bands of interest for the stimulus Type A
and B within neural network development stages

Learning Percentage of phase-coupled frequencies Indexes
Phase LF: [1-24] Hz [24-60] Hz HF: [60-84] Hz IRF RFR
Stimulus Type A

PRE 281 545 210 43 1.34

EARLY 295 745 450 60 0.66

LATE 300 435 45 13 6.67

POST 85 110 30 26 2.83
Stimulus Type B

PRE 265 635 430 62 0.62

EARLY 305 680 450 60 0.68

LATE 120 105 20 14 6.00

POST 170 150 70 29 243

IRF: index of resonant frequencies. RFR: raw frequency ratio.

and the values were intermediate between pre/early-
learning and late-learning phase.

Fig. 10 shows the distributions of phase-coupled
frequencies in the range 1-50 Hz for all recording
periods in controls and patients. A general observation
is that for all Subjects and during all conditions the
majority of phase-coupled frequencies were in the
range 13-33 Hz. In addition, the histograms of Fig.
10 show that for patients before CBT-I treatment the
relative count of phase-coupled frequencies in the
range 33-48 Hz was larger than the count of phase-
coupling in the low frequency range, up to 13 Hz.
Notice that phase-coupled frequencies f3 should not
be confounded with the usual frequency bands of the
EEG power spectra.

Table 3 shows the relative count of phase-

coupling in the frequency bands of interest and the
values of indexes IRF and RFR. The general pattern
was an increase of high frequency coupling in the
group of patients before treatment. Then the main
effect of treatment was to reduce high-frequency
coupling and shift phasecoupling towards low
frequencies, somehow with a significant increase of
low frequency coupling compared to the controls.
The effect of CBT-I treatment was tested against the
control groups using y’test, 2P < 0.05. In the LF
range the patients before treatment show fewer phase-
coupling than controls during all recording periods,
but REM sleep (Table 3). The CBT-I treatment sig-
nificantly increased the phase-coupling in the LF
band during all other intervals, either re-establishing
a level close to the controls or even beyond that level,
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Table 3. Percentage of phase-coupled frequencies in each frequency bands of interest for the the control group and
for the group of patients before and after CBT-I treatment

Subject Group Percentage of phase-coupled frequencies Indexes
LF: [1-13] Hz [13-33] Hz HF: [33-48] Hz IRF RFR
Eyes Closed
Control 12 74 14 54 1.17
Patient before 2 (%) 77 (ns) 21 (ns) 91 (%) 10.50
after CBT-I 8 (ns) 88 (ns) 4 (%) 33 (ns) 0.50
Pre-Theta
Control 12 5 13 52 1.08
Patient before 3(%) 87 (ns) 10 (ns) 77 (ns) 3.33
after CBT-1 3(%) 96 (ns) 1 (%%) 25 (%) 0.33
NREM
Control 57 30 13 19 023
Patient before 27 (%) 60 (%) 13 (ns) 33 (%) 048
after CBT-I 42 (ns) 57 (%) 1 (%%) 2 (%) 0.02
REM
Control 4 90 5 56 1.25
Patient before 4 (ns) 85 (ns) 12 (ns) 75 (ns) 3.00
after CBT-I 19 (%) 79 (ns) 2 (ns) 10 (*) 0.11

IRF: index of resonant frequencies. RFR: raw frequency ratio.
Significance levels: (ns) not significant, (*) 5%, (**) 1%.
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Fig. 10. Relative distribution of the frequencies of resonance for control and patient groups before and after CBT-I treatment. Bin size
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as observed during REM. The mid-range (13-33 Hz)
phase-coupling was not affected by the CBT-I
treatment. In the HF range the treatment significantly
reduced the phase-coupling by a shift towards lower
frequencies during all recording periods, but REM.

Discussion

This paper described the implementation of a
neuronal system simulator on a hybrid scalable multi-
agent hardware platform based on the Ubidules
framework (41) and its application to the study of
information processing in hierarchically organized
neural networks circuits. In coupled Ubidules we
recorded the spike trains of all neurons and the usual
neurophysiological analyses could be applied to assess
the effect of hierarchical projections. We have ex-
plored one simple Ubinet network circuit characterized
by a sensory network processing the external input
that projects to a hierarchically organized multilayered
(in our case formed by only two layers) network of
processing areas which eventually project on a motor
network that generates an activity keen to be encoded
into actuators. The Ubinet activity was studied
by virtual electrodes that recorded neural signals
—electrochipograms (EChG)- comparable to EEG and
that could be analyzed using the same techniques, in
particular third order cumulant analysis (7, 11).

In paired networks we recorded the spike trains
of all excitatory units that were not directly stimulated
and that were surviving at the arbitrary end of
simulation runs set at = 100.000 time steps. The
results show that the downstream network activity
was characterized by fewer surviving cells at the end
of the simulation run. This difference was only due to
synaptic pruning driven by STDP because cell death
provoked by apoptosis was similar for both upstream
and downstream networks. We searched for spa-
tiotemporal firing patterns (PFS) in detail using the
PGA technique (44, 45). In presence of an external
stimulus PFS observed in the upstream network were
relatively more frequent than in the absence of stimula-
tion, thus confirming our previous results (22). Despite
the number of active cells was smaller the number of
patterns was larger in the downstream network.

The analysis of the onset time of the patterns
and their internal dynamics suggests that downstream
networks took more time to build-up the connectivity
underlying the emergence of the patterns. This
tendency was enhanced in case of divergent and
stronger connectivity towards the downstream network
(‘coupled 2’ condition). The finding of what could be
viewed as an increase in “complexity” of the tem-
porally organized activity in the upstream network is
achieved with less active units and in a totally un-

supervised way. This observation is in agreement
with experimental observations of a general pattern
of axonal and synaptic pruning during neural develop-
ment (25, 28). We may suggest that the outcome of
this process could be the emergence of a hierarchical
connectivity better suited to process temporal informa-
tion, also in agreement with gradient-like organization
observed during early corticogenesis (13).

The experimental approach to the Ubinet activity
by recording the EChG was aimed to assess the effect
of a repeated stimulation on the functional connectivity
established between the Ubidules. Our pre-learning
stage could represent a control situation driven
exclusively by the background activity of the subject’s
brain. The subject is naive to the coming stimulus so
that a learning process can occur. During the early-
learning stage the repetition of the stimuli at regular
intervals may initiate a recognition process that will
eventually shape the functional connectivity of feature
detecting cell assemblies after selective synaptic and
cell pruning.

The third order spectral analysis of EChG and
EEG allows to determine the frequency range of
quadratic phase coupling (resonant frequency) across
cortical areas (49, 50). According to the usual in-
terpretation based on standing waves theory, high
resonant frequencies mean that information processing
is transmitted at short distance (i.e., the distance
between two nodes of the wave). A coupling that
occurs at high frequencies may be interpreted as a
sign of focal cortical interactions. Conversely, a
coupling at low frequencies suggests an increased
cross-areal involvement in neural processing.

A remarkable result is the finding that late-
learning stages in the Ubinet simulations were charac-
terized by a value of IRF = 14 compared with pre- and
early-learning stages (/RF in the range 43-62). In the
study with human Subjects we observed that controls
and patients after CBT-I treatment were characterized,
during all sleep phases by values of IRF lower than
insomniac patients before treatment. It is also worth
reporting that the only condition that let appear a
difference of resonant frequencies in the range [13-
33] Hz was during NREM sleep irrespective of the
treatment. This last result suggests that despite an
overall shift of resonant frequencies towards recovery,
focal cortical interactions tended to persist in patients
during non-REM (NREM) sleep periods. This is in
agreement with the finding of decreased regional
cerebral blood flow during NREM reported in the
subcortical, limbic/arousal systems and in the anterior
cingulate and medial prefrontal areas of patients
compared to normal controls (33).

The comparison between the Ubidules and
human recordings suggests that Ubinet activity during
the preand early-learning stages is characterized by
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features similar to the insomniac brain, with too many
high resonant frequencies. Then, an appropriate
stimulation of the Ubinet as well as cognitive brain
therapy are both modifying the ratio of resonant fre-
quencies provoking a shift of the indexes towards low
frequencies at all brain states. The prevalence of high
frequencies of resonance in chronic primary insomniac
patients may be associated to the prevalence of mul-
tiple sites of focal cortical interactions, which supports
the “hyperarousal” hypothesis in insomniac patients
(5,37). However, what is the meaning of “hyper-
arousal” in an artificial brain? Moreover, the question
whether robots need to sleep (14) has been raised.

Our findings suggest that new tools provided by
modular and scalable neural network simulators offer
new opportunities to neurophysiologists and clinicians
to test hypotheses based on the analysis of neural
signals, at the microscopic level with spike trains and
at mesoscopic levels with EChG. The future work is
also aimed to test other neural circuits and other
neuronal models to provide a fully fledged testable
platform based on numerous interacting and evolvable
neural application agents suitable for implementation
on mobile robots.
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